Токуо Ј. Матн. Vol. 14, No. 1, 1991

Square-Free Discriminants and Affect-Free Equations

Kenzo KOMATSU

Keio University

§1. Square-free discriminants.

Unramified A_n -extensions of quadratic number fields are discussed by Uchida [5], [6] and Yamamoto [10]. Their results are closely related to the fact that there are infinitely many algebraic number fields K of degree n (n > 1) with the following properties:

- 1. The Galois group of \overline{K}/Q is the symmetric group S_n , where \overline{K} denotes the Galois closure of K/Q.
- 2. The discriminant of K is square-free.

It is the purpose of the present paper to discuss square-free discriminants and affect-free (affectios) equations. We begin by proving the following theorem. The Galois closure of K/Q means the minimal Galois extension of Q which contains K.

THEOREM 1. Let K denote an algebraic number field of degree $n \ (n \ge 1)$ and let \overline{K} denote the Galois closure of K/Q. Suppose that the discriminant d of K is square-free. Then we have:

- 1. The Galois group of \overline{K}/Q is the symmetric group S_n .
- 2. The Galois group of $\overline{K}/Q(\sqrt{d})$ is the alternating group A_n .
- 3. Every prime ideal is unramified in $\overline{K}/Q(\sqrt{d})$.

PROOF. We may assume that n > 1. Let G denote the Galois group of \overline{K}/Q . Then G is a transitive permutation group on $\{1, 2, \dots, n\}$. Suppose that K has a subfield F such that

$$Q \subset F \subset K, F \neq Q, F \neq K.$$

Let d_F denote the discriminant of F. Then d is divisible by d_F^m , where m = [K: F] ([1], Satz 39). Since m > 1, by Minkowski's theorem we see that d cannot be square-free. This implies that G is primitive ([9], Theorem 7.4). Let p denote a prime number which divides d; by hypothesis d is exactly divisible by p. Then (van der Waerden [7]) the prime ideal decomposition of p (in K) is of the form

Received April 24, 1990