Токуо Ј. Матн. Vol. 16, No. 1, 1993

Remarks on Pitman Deficiency

Haruyoshi MITA

University of the Sacred Heart (Communicated by Y. Shimizu)

Introduction.

Let the distributions P_{θ} be indexed by parameter θ in a set Θ , where Θ is a subset of \mathbb{R}^{1} . We consider the testing problem

 $H: \theta = \theta_0$ against $K: \theta > \theta_0$.

In case that the alternative is close to the null hypothesis, we attempt to compare two tests. A method of the comparison of two tests in the local sense was given by Pitman (Noether [5], Pitman [6]). Pitman introduced the concept of asymptotic relative efficiency of two tests by choosing alternative sequences that approach to the null hypothesis. Roughly speaking, his method is as follows. Let $\{T_{1n_1}\}, \{T_{2n_2}\}$ be two tests based on n_1 , n_2 samples, respectively, and α_{in_i} , $\beta_{in_i}(\theta)$ (i = 1, 2) denote the corresponding levels and power functions. For i=1, 2 suppose that $\alpha_{in_i} \rightarrow \alpha \ (0 < \alpha < 1)$ as $n_i \rightarrow \infty$, and choose the alternative sequence $\{\theta_{in_i}\}$ approaching to the null hypothesis θ_0 so that $\beta_{in_i}(\theta_{in_i}) \rightarrow \beta \ (0 < \beta < 1)$ as $n_i \rightarrow \infty$. Then Pitman defined the asymptotic relative efficiency (ARE) of $\{T_{2n}\}$ with respect to $\{T_{1n}\}$ as the limit of the ratio n_1/n_2 . The superiority or inferiority between $\{T_{1n}\}$ and $\{T_{2n}\}$ in the local sense is decided whether ARE>1 or ARE < 1. If ARE = 1 then we consider the limit of the difference of sample sizes $n_2 - n_1$, what is called Pitman deficiency, as the second measure of comparison of the two tests. In many cases it occurs that $\theta_{in} = \theta_0 + k_i / \sqrt{n}$. But this alternative form is not appropriate for the study of deficiency, because approaching to the null hypothesis is coarse. And so we choose the alternative sequence of the form $\theta_{in} = \theta_0 + k_i / \sqrt{n + l_i / n + m_i / (n \sqrt{n})}$ (i=1, 2). By expanding the power functions we compare the two tests under these alternative sequences. Here l_i may be related to the case when Pitman deficiency is infinite. In this paper, however, we study the case when Pitman deficiency is finite only.

In section 1 we consider a method of comparison of two tests in such a case that ARE=1. In section 2 the method is applied to two examples and in section 3 we refer to the relation between our method and Pitman deficiency.

Received April 6, 1992