Токуо Ј. Матн. Vol. 16, No. 1, 1993

Nonexistence Results for Harmonic Maps between Noncompact Complete Riemannian Manifolds

Kazuo AKUTAGAWA and Atsushi TACHIKAWA

Shizuoka University (Communicated by Y. Maeda)

§1. Introduction.

In this paper, we prove two kinds of nonexistence results for harmonic maps. The one is to prove nonexistence of a harmonic map with a rotational nondegeneracy at infinity, from a simple Riemannian manifold to an Hadamard manifold of negative sectional curvature bounded away from zero. The other is to prove nonexistence of a nonconstant harmonic map with a polynomial growth dilatation, from a complete Riemannian manifold of nonnegative Ricci curvature to a Riemannian manifold of negative sectional curvature bounded away from zero.

Let $M = (M^m, h)$ and $N = (N^n, g)$ be Riemannian manifolds of dimension m and n $(m, n \ge 2)$ respectively. Throughout this paper we denote by $x = (x^1, \dots, x^m)$ and $y = (y^1, \dots, y^n)$ local coordinates on M and N respectively. We shall write $(h_{\alpha\beta}(x))$ and $(g_{ij}(y))$ for the metric tensors with respect to the local coordinates on M and Nrespectively. Moreover, $(h^{\alpha\beta}(x)) = (h_{\alpha\beta}(x))^{-1}$, $(g^{ij}(y)) = (g_{ij}(y))^{-1}$ and h(x) denotes the determinant of $(h_{\alpha\beta})$. The Christoffel symbols on M and N will be denoted by $\Gamma^{\alpha}_{\beta\gamma}$ and Γ^i_{ik} respectively.

For a map $U \in C^1(M, N)$ we define the energy density e(U)(x) of U at $x \in M$ by

$$e(U)(x) = \frac{1}{2} \|dU(x)\|^2 = \frac{1}{2} h^{\alpha\beta}(x) D_{\alpha} u^i(x) D_{\beta} u^i(x) g_{ij}(u(x)) ,$$

where u(x) is the expression of U(x) with respect to the local coordinates (y^1, \dots, y^n) and D_{α} denotes $\partial/\partial x^{\alpha}$. For a bounded domain $\Omega \subset M$, we define the *energy* of U on Ω by

The authors are partly supported by Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

Received February 26, 1992

Revised April 26, 1992