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\S 1. Introduction.

In this paper, we prove two kinds of nonexistence results for harmonic maps. The
one is to prove nonexistence of a harmonic map with a rotational nondegeneracy at
infinity, from a simple Riemannian manifold to an Hadamard manifold of negative
sectional curvature bounded away from zero. The other is to prove nonexistence of a
nonconstant harmonic map with a polynomial growth dilatation, from a complete
Riemannian manifold of nonnegative Ricci curvature to a Riemannian manifold of
negative sectional curvature bounded away from zero.

Let $M=(M^{m}, h)$ and $N=(N^{n}, g)$ be Riemannian manifolds of dimension $m$ and $n$

$(m, n\geq 2)$ respectively. Throughout this paper we denote by $x=(x^{1}, \cdots, x^{m})$ and
$y=(y^{1}, \cdots, y^{n})$ local coordinates on $M$ and $N$ respectively. We shall write $(h_{\alpha\beta}(x))$ and
$(g_{ij}(y))$ for the metric tensors with respect to the local coordinates on $M$ and $N$

respectively. Moreover, $(h^{\alpha\beta}(x))=(h_{\alpha\beta}(x))^{-1},$ $(g^{ij}(y))=(g_{ij}(y))^{-1}$ and $h(x)$ denotes the
determinant of $(h_{\alpha\beta})$ . The Christoffel symbols on $M$ and $N$ will be denoted by $\Gamma_{\beta\gamma}^{\alpha}$ and
$\Gamma_{jk}^{i}$ respectively.

For a map $U\in C^{1}(M, N)$ we define the energy density $e(U)(x)$ of $U$ at $x\in M$ by

$e(U)(x)=\frac{1}{2}\Vert dU(x)\Vert^{2}=\frac{1}{2}h^{\alpha\beta}(x)D_{\alpha}u^{i}(x)D_{\beta}u^{i}(x)g_{ij}(u(x))$ ,

where $u(x)$ is the expression of $U(x)$ with respect to the local coordinates $(y^{1}, \cdots, f)$

and $D_{\alpha}$ denotes $\partial/\partial x^{a}$ . For a bounded domain $\Omega\subset M$, we define the energy of $U$ on $\Omega$
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