A Brownian Ball Interacting with Infinitely Many Brownian Particles in $\boldsymbol{R}^{\boldsymbol{d}}$

Yasumasa SAISHO and Hideki TANEMURA*

Kumamoto University and Chiba University

(Communicated by Y. Maeda)

1. Introduction and main results.

In this paper we construct a system of a hard ball with radius $r(\epsilon(0, \infty))$ interacting with infinitely many point particles in $\boldsymbol{R}^{d}(d \geq 2)$. All particles and the ball are undergoing Brownian motions and when the distance between a particle and the center of the ball attains a given constant r, they repel each other instantly. Saisho and Tanaka [5] constructed a system of mutually reflecting finitely many hard balls by solving certain stochastic differential equation of Skorohod type. Following the idea of [5], Saisho [4] constructed a system of mutually repelling finitely many particles of m types: the number of particles of type k is $n_{k}\left(\sum_{k=1}^{m} n_{k}=n<\infty\right)$ and when the distance between two particles of different type attains a constant r, they repel each other instantly. In case each type consists of only one particle, the model of [4] is reduced to that of [5]. Our present model in this paper is formally regarded as the case of $m=2, n_{1}=1$ and $n_{2}=\infty$ in the model of [4].

Let \mathfrak{M}_{0} be the set of all countable subsets η of $\boldsymbol{R}^{d} \backslash \boldsymbol{U}_{\boldsymbol{r}}(0)$ satisfying $N_{\mathbf{K}}(\eta) \equiv$ $\#(\eta \cap K)<\infty$ for any compact subset K, where $U_{r}(x)=\left\{y \in \boldsymbol{R}^{d}:|x-y|<r\right\}$. The configuration space of a hard ball with radius r and infinitely many point particles is defined by

$$
X=\left\{x=\left(x_{0}, x_{1}, \cdots\right) \in\left(R^{d}\right)^{\infty}:\left\{x_{i}-x_{0}, i \in N\right\} \in \mathfrak{M}_{0}\right\},
$$

where x_{0} is the position of center of the hard ball and x_{i} is that of the i-th point particle. We put $W_{0}=\boldsymbol{C}\left(w:[0, \infty) \rightarrow \boldsymbol{R}^{d}, w(0)=0\right)$ and $\boldsymbol{W}=W_{0}^{\infty}$. Given $\boldsymbol{x}=\left(x_{0}, x_{1}, \cdots\right) \in \boldsymbol{X}$ and $\boldsymbol{w}=\left(w_{0}, w_{1}, \cdots\right) \in \boldsymbol{W}$, we consider the following equation (1.1) under the conditions (1.2), (1.3) and (1.4):

[^0]
[^0]: Received August 21, 1992

 * Research supported in part by Grant-in-Aid for Scientific Research (No. 03740101), Ministry of Education, Science and Culture.

