Токуо J. Матн. Vol. 16, No. 2, 1993

A Brownian Ball Interacting with Infinitely Many Brownian Particles in R^d

Yasumasa SAISHO and Hideki TANEMURA*

Kumamoto University and Chiba University (Communicated by Y. Maeda)

1. Introduction and main results.

In this paper we construct a system of a hard ball with radius $r (\in (0, \infty))$ interacting with infinitely many point particles in \mathbb{R}^d $(d \ge 2)$. All particles and the ball are undergoing Brownian motions and when the distance between a particle and the center of the ball attains a given constant r, they repel each other instantly. Saisho and Tanaka [5] constructed a system of mutually reflecting finitely many hard balls by solving certain stochastic differential equation of Skorohod type. Following the idea of [5], Saisho [4] constructed a system of mutually repelling finitely many particles of m types: the number of particles of type k is $n_k (\sum_{k=1}^m n_k = n < \infty)$ and when the distance between two particles of different type attains a constant r, they repel each other instantly. In case each type consists of only one particle, the model of [4] is reduced to that of [5]. Our present model in this paper is formally regarded as the case of m=2, $n_1=1$ and $n_2=\infty$ in the model of [4].

Let \mathfrak{M}_0 be the set of all countable subsets η of $\mathbb{R}^d \setminus U_r(0)$ satisfying $N_K(\eta) \equiv \sharp(\eta \cap K) < \infty$ for any compact subset K, where $U_r(x) = \{y \in \mathbb{R}^d : |x-y| < r\}$. The configuration space of a hard ball with radius r and infinitely many point particles is defined by

$$X = \{x = (x_0, x_1, \cdots) \in (\mathbf{R}^d)^{\infty} : \{x_i - x_0, i \in \mathbf{N}\} \in \mathfrak{M}_0\},\$$

where x_0 is the position of center of the hard ball and x_i is that of the *i*-th point particle. We put $W_0 = C(w : [0, \infty) \rightarrow \mathbb{R}^d, w(0) = 0)$ and $W = W_0^\infty$. Given $x = (x_0, x_1, \cdots) \in X$ and $w = (w_0, w_1, \cdots) \in W$, we consider the following equation (1.1) under the conditions (1.2), (1.3) and (1.4):

Received August 21, 1992

* Research supported in part by Grant-in-Aid for Scientific Research (No. 03740101), Ministry of Education, Science and Culture.