On the Mean-Square for the Approximate Functional Equation of the Riemann Zeta-Function

Isao KIUCHI

Keio University
(Communicated by Y. Maeda)

§1. Introduction.

Let d(n) be the number of positive divisors of n, and γ the Euler constant. The problem of estimating the quantity

$$\Delta(x) = \sum_{n \le x}' d(n) - x(\log x + 2\gamma - 1) - 1/4$$

is called the Dirichlet divisor problem, where the symbol \sum' indicates that the last term is to be halved if x is an integer. G. F. Voronoi [9] proved two remarkable formulas concerning $\Delta(x)$. Besides giving an explicit expression for $\Delta(x)$, he (see also (2.3) of [2]) proved

$$\int_{2}^{T} \Delta(x) dx = 4^{-1}T + (2\sqrt{2}\pi^{2})^{-1}T^{3/4} \sum_{n=1}^{\infty} d(n)n^{-5/4} \sin(4\pi\sqrt{nT} - 4^{-1}\pi) + O(1) . (1.1)$$

The sharp estimate of the error term is to be noted.

Let $\zeta(s)$ be the Riemann zeta-function, and for $T \ge 2$, let

$$E(T) = \int_0^T |\zeta(1/2 + it)|^2 dt - T\log(T/2\pi) - (2\gamma - 1)T, \qquad (1.2)$$

the error term in the mean-square formula for $\zeta(s)$. J. L. Hafner and A. Ivić [2] established the analogue of (1.1) for E(T):

$$\int_{2}^{T} E(t)dt = \pi T + 2^{-1} (2T/\pi)^{3/4} \sum_{n=1}^{\infty} (-1)^{n} d(n) n^{-5/4} \sin(4\pi (nT/2\pi)^{1/2} - 4^{-1}\pi) + O(T^{2/3} \log T) \quad \text{(see (2.5) of [2])}.$$
(1.3)

We note that apart from the factor $(-1)^n$ the series in (1.3) is the same as the one in

Received June 3, 1992 Revised November 1, 1992