On the Mean-Square for the Approximate Functional Equation of the Riemann Zeta-Function

Isao KIUCHI

Keio University

(Communicated by Y. Maeda)

§1. Introduction.

Let $d(n)$ be the number of positive divisors of n, and γ the Euler constant. The problem of estimating the quantity

$$
\Delta(x)=\sum_{n \leqq x}^{\prime} d(n)-x(\log x+2 \gamma-1)-1 / 4
$$

is called the Dirichlet divisor problem, where the symbol \sum^{\prime} indicates that the last term is to be halved if x is an integer. G. F. Voronoi [9] proved two remarkable formulas concerning $\Delta(x)$. Besides giving an explicit expression for $\Delta(x)$, he (see also (2.3) of [2]) proved

$$
\begin{equation*}
\int_{2}^{T} \Delta(x) d x=4^{-1} T+\left(2 \sqrt{2} \pi^{2}\right)^{-1} T^{3 / 4} \sum_{n=1}^{\infty} d(n) n^{-5 / 4} \sin \left(4 \pi \sqrt{n T}-4^{-1} \pi\right)+O(1) . \tag{1.1}
\end{equation*}
$$

The sharp estimate of the error term is to be noted.
Let $\zeta(s)$ be the Riemann zeta-function, and for $T \geqq 2$, let

$$
\begin{equation*}
E(T)=\int_{0}^{T}|\zeta(1 / 2+i t)|^{2} d t-T \log (T / 2 \pi)-(2 \gamma-1) T \tag{1.2}
\end{equation*}
$$

the error term in the mean-square formula for $\zeta(s)$. J. L. Hafner and A. Ivić [2] established the analogue of (1.1) for $E(T)$:

$$
\begin{align*}
\int_{2}^{T} E(t) d t= & \pi T+2^{-1}(2 T / \pi)^{3 / 4} \sum_{n=1}^{\infty}(-1)^{n} d(n) n^{-5 / 4} \sin \left(4 \pi(n T / 2 \pi)^{1 / 2}-4^{-1} \pi\right) \\
& +O\left(T^{2 / 3} \log T\right) \quad(\text { see (2.5) of [2]) } \tag{1.3}
\end{align*}
$$

We note that apart from the factor $(-1)^{n}$ the series in (1.3) is the same as the one in

[^0]
[^0]: Received June 3, 1992
 Revised November 1, 1992

