Токуо J. Матн. Vol. 18, No. 2, 1995

Kähler Magnetic Flows for a Manifold of Constant Holomorphic Sectional Curvature

Toshiaki ADACHI*

Nagoya Institute of Technology (Communicated by Y. Maeda)

Introduction.

In his paper [7], being inspired by a classical treatment of static magnetic fields in the three dimensional Euclidean space, T. Sunada studied the flow associated with a magnetic field on a Riemann surface. A closed 2-form **B** on a complete Riemannian manifold M is called a magnetic field. Let $\Omega = \Omega_B$ denote the skew symmetric operator on the tangent bundle TM of M satisfying $B(u, v) = \langle u, \Omega(v) \rangle$ with the Riemannian metric \langle , \rangle for every tangent vectors u and v. The Newton equation on this setting is of the form $\nabla_{\dot{\gamma}}\dot{\gamma} = \Omega(\dot{\gamma})$ for a smooth curve γ on *M*. We call such a curve satisfying this equation a trajectory for **B**. In terms of physics it is a trajectory of a charged particle moving on this manifold under the action of the magnetic field. The aim of this paper is to give a light in terms of magnetic fields on dynamical systems for a manifold of complex space form. The most important dynamical object associated to a Riemannian manifold is the geodesic flow. Consider the case without an action of magnetic field, B=0. The Newton equation turns out to $\nabla_{y}\dot{y} = 0$, hence trajectories are nothing but geodesics. In the same way as the geodesic flow corresponds to geodesics, we can define a flow associated with a magnetic field in the following manner. One can easily check that every trajectory $\gamma(t)$ for **B** has constant speed, hence is defined for $-\infty < t < \infty$. We call a trajectory normal if it is parametrized by its arc length. The magnetic flow $B\varphi_t: UM \to UM$ on the unit tangent bundle UM is defined by

$$\boldsymbol{B} \varphi_t(\boldsymbol{v}) = \gamma_v(t) , \qquad \boldsymbol{v} \in UM , \quad -\infty < t < \infty ,$$

where γ_v denotes the normal trajectory for **B** with $\dot{\gamma}_v(0) = v$. If γ is a trajectory for **B**, then the curve $\sigma(t) = \gamma(\lambda t)$ with a constant λ is a trajectory for λB . This represents a dynamical property of trajectories for **B**.

On a Riemann surface, magnetic fields are of the form $f \cdot Vol$ with a smooth

Received June 20, 1994

Revised May 30, 1995

* Partially supported by The Sumitomo Foundation