Токуо Ј. Матн. Vol. 20, No. 1, 1997

On the Generalized Thomas-Fermi Differential Equations and Applicability of Saito's Transformation

Ichiro TSUKAMOTO

(Communicated by M. Maejima)

Dedicated to Professor Junji Kato on his sixtieth birthday

1. Introduction.

Let us consider the generalized Thomas-Fermi differential equation

(1.1)
$$x'' = P(t)x^{1+\alpha}, \quad '=d/dt, \quad x \ge 0$$

where α is a nonzero real constant and $x^{1+\alpha}$ denotes a nonnegative-valued branch.

In the papers [5], [6] Saito succeeded in investigating the asymptotic behavior of solutions of (1.1) where $P(t) = t^{\alpha \lambda - 2}$ (λ is a positive constant) with the aid of a transformation

(1.2)
$$y = \psi(t)^{-\alpha} \phi(t)^{\alpha}, \qquad z = ty'$$

which transforms (1.1) to a first order algebraic differential equation

(1.3)
$$\frac{dz}{dy} = \frac{-\lambda(\lambda+1)\alpha^2 y^2 + (2\lambda+1)\alpha yz - (1-\alpha)z^2 + \lambda(\lambda+1)\alpha^2 y^3}{\alpha yz}$$

In (1.2), $\psi(t) = [\lambda(\lambda+1)]^{1/\alpha} t^{-\lambda}$ is a particular solution of (1.1) and $\phi(t)$ is an arbitrary solution of (1.1). Moreover in [8], [9] we considered the case $P(t) = \pm e^{\alpha \lambda t}$ where λ is a real constant, using a transformation in a form similar to (1.2) such as

 $y = \psi(t)^{-\alpha} \phi(t)^{\alpha}, \qquad z = y'$

where $\psi(t) = \pm \lambda^{2/\alpha} e^{-\lambda t}$. This transforms (1.1) to a first order algebraic differential equation also.

Since the coefficients of y' in the two transformations above differ, we consider a more general transformation

(1.4)
$$y = \psi(t)^{-\alpha} \phi(t)^{\alpha}, \qquad z = \theta(t) y'$$

Received July 3, 1995 Revised June 4, 1996