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1. Introduction.

Let us consider the generalized Thomas-Fermi differential equation

(1.1) $x^{\prime\prime}=P(t)x^{1+\alpha}$ , $’=d/dt$ , $x\geqq 0$

where $\alpha$ is a nonzero real constant and $x^{1+\alpha}$ denotes a nonnegative-valued branch.
In the papers [5], [6] Saito succeeded in investigating the asymptotic behavior of

solutions of (1.1) where $P(t)=t^{\alpha\lambda-2}$ ( $\lambda$ is a positive constant) with the aid of a
transformation

(1.2) $y=\psi(t)^{-\alpha}\phi(t)^{\alpha}$ , $z=ty^{\prime}$

which transforms (1.1) to a first order algebraic differential equation

(1.3) $\frac{dz}{dy}=\frac{-\lambda(\lambda+1)\alpha^{2}y^{2}+(2\lambda+1)\alpha yz-(1-\alpha)z^{2}+\lambda(\lambda+1)\alpha^{2}y^{3}}{\alpha yz}$ .

In (1.2), $\psi(t)=[\lambda(\lambda+1)]^{1/\alpha}t^{-\lambda}$ is a particular solution of (1.1) and $\phi(t)$ is an arbitrary
solution of (1.1). Moreover in [8], [9] we considered the case $P(t)=\pm e^{\alpha\lambda t}$ where $\lambda$ is
a real constant, using a transformation in a form similar to (1.2) such as

$y=\psi(t)^{-\alpha}\phi(t)^{\alpha}$ , $z=y^{\prime}$

where $\psi(t)=\pm\lambda^{2/\alpha}e^{-\lambda t}$ . This transforms (1.1) to a first order algebraic differential
equation also.

Since the coefficients of $y^{\prime}$ in the two transformations above differ, we consider a
more general transformation

(1.4) $y=\psi(t)^{-\alpha}\phi(t)^{\alpha}$ , $z=\theta(t)y^{\prime}$
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