Tokyo J. Math. Vol. 24, No. 2, 2001

On Some Modules Attached to the Lubin-Tate Formal Groups

Kazuhito KOZUKA and Hirofumi TSUMURA

Miyakonojo National College of Technology and Tokyo Metropolitan College (Communicated by K. Nakamula)

Introduction.

Let p be a prime number and denote by \mathbf{Q}_p , \mathbf{Z}_p and \mathbf{C}_p , the p-adic rational number field, the ring of integers of \mathbf{Q}_p and the completion of the algebraic closure of \mathbf{Q}_p , respectively. Let \mathcal{O} denote the ring of integers of \mathbf{C}_p .

Let F(X, Y) be a Lubin-Tate formal group over \mathbb{Z}_p and h(X) a meromorphic series in $\mathcal{O}((X))^{\times}$. In [12], Shiratani and Imada constructed a *p*-adic zeta function $\zeta_p(s, F, h)$, which explains many well-known *p*-adic interpolating functions in a unified manner. For example, if F(X, Y) is the formal multiplicative group $\mathbb{G}_m(X, Y) = (X+1)(Y+1)-1$ and h(X) = X, then $\zeta_p(s, \mathbb{G}_m, X)$ is the ordinary *p*-adic zeta function. If *F* is the formal group associated with an elliptic curve over \mathbb{Z} having complex multiplication with ordinary reduction, then $\zeta_p(s, F, X)$ coincides with the *p*-adic zeta function for the elliptic curve ([10]).

Let χ be a primitive Dirichlet character with conductor a power of p. In [7], under the slightly generalized situation that F(X, Y) is a relative Lubin-Tate formal group defined over the ring of integers of an unramified extension of \mathbf{Q}_p , we constructed a meromorphic function $L_p(s, \chi, F, h)$, which is an extension of $\zeta_p(s, F, h)$. Especially, $L_p(s, \chi, \mathbf{G}_m, X)$ coincides with the Kubota-Leopoldt *p*-adic *L*-function $L_p(s, \chi)$.

As is well known, Iwasawa gave the fascinating result that $L_p(s, \chi)$ is closely related to the Galois structure of the local units modulo the closure of the cyclotomic units ([4], [9, Chapter 7], [15, Section 13.8]). This result was extended to abelian fields by Gillard, Tsuji and so on ([3], [13]). It is also well known that Coates and Wiles discovered the analogue of this result for the elliptic units ([1]).

The main purpose of this paper is to generalize the above result of Iwasawa for the function $L_p(s, \chi, F, h)$ under the situation that F is defined over \mathbb{Z}_p and that h(X) satisfies certain appropriate conditions (Theorems 4.2 and 4.3). For this purpose, we use the method of the logarithmic derivatives developed by Coates and Wiles [1]. Let us give a description of each section.

Received May 25, 2000 Revised October 6, 2000