# Multiplicity and Hilbert-Kunz Multiplicity of Monoid Rings 

Kazufumi ETO

Nippon Institute of Technology
(Communicated by K. Kobayasi)

In this paper, we will give a method to compute the multiplicity and the Hilbert-Kunz multiplicity of monoid rings. The multiplicity and the Hilbert-Kunz multiplicity are fundamental invariants of rings. For example, the multiplicity (resp. the Hilbert-Kunz multiplicity) of a regular local ring equals to one. Monoid rings are defined by lattice ideals, which are binomial ideals $I$ in a polynomial ring $R$ over a field such that any monomial is a non zero divisor on $R / I$. Affine semigroup rings are monoid rings. Hence we want to extend the thoery of affine semigroup rings to that of monoid rings.

## 1. Main Result.

Let $N>0$ be an integer and $\mathbf{Z}$ the ring of integers. For $\alpha \in \mathbf{Z}^{N}$, we denote the $i$-th entry of $\alpha$ by $\alpha_{i}$. We say $\alpha>0$ if $\alpha \neq 0$ and $\alpha_{i} \geq 0$ for each $i$. And $\alpha>\alpha^{\prime}$ if $\alpha-\alpha^{\prime}>0$. Let $R=k\left[X_{1}, \cdots, X_{N}\right]$ be a polynomial ring over a field $k$. For $\alpha>0$, we simply write $X^{\alpha}$ in place of $\prod_{i=1}^{N} X_{i}^{\alpha_{i}}$.

For a positive submodule $V$ of $\mathbf{Z}^{N}$ of rank $r$, we define an ideal $I(V)$ of $R$, which is generated by all binomials $X^{\alpha}-X^{\beta}$ with $\alpha-\beta \in V$ (we say that $V$ is positive if it is contained in the kernel of a map $\mathbf{Z}^{N} \rightarrow \mathbf{Z}$ which is defined by positive integers). Put $d=N-r$. Then $R / I(V)$ is naturally a $\mathbf{Z}^{d}$-graded ring, which is called a monoid ring. Further, there is a positive submodule $V^{\prime}$ of $\mathbf{Z}^{N}$ of rank $r$ containing $V$ such that $\mathbf{Z}^{N} / V^{\prime}$ is torsion free. That is, $\mathbf{Z}^{N} / V \cong \mathbf{Z}^{N} / V^{\prime} \oplus T$, where $\mathbf{Z}^{N} / V^{\prime} \cong \mathbf{Z}^{d}$ and $T$ is a torsion module. Hence we can see an element of $\mathbf{Z}^{N} / V$ as a pair $(\alpha, \beta)$ where $\alpha \in \mathbf{Z}^{d}$ is a degree element and $\beta \in T$ is a torsion element. Put $t=|T|$ (if $T=\{0\}$, put $t=1$ ). Let $A=R / I(V)$ and $A^{\prime}=R / I\left(V^{\prime}\right)$. For each $\alpha \in \mathbf{Z}^{d}$, we denote the degree $\alpha$ component of the $\mathbf{Z}^{d}$-graded ring $A$ (resp. $A^{\prime}$ ) by $A_{\alpha}$ (resp. $A_{\alpha}^{\prime}$ ). It is clear $\operatorname{dim}_{k} A_{\alpha} \leq t$ and $\operatorname{dim}_{k} A_{\alpha}^{\prime} \leq 1$ for $\alpha \in \mathbf{Z}^{d}$ and $\operatorname{dim}_{k} A_{\alpha} \geq \operatorname{dim}_{k} A_{\alpha^{\prime}}$ if $\alpha>\alpha^{\prime}$ and if there is a monomial of $A$ of the degree $\alpha-\alpha^{\prime}$.

ExAmple. Let $V$ be a submodule of $\mathbf{Z}^{3}$ generated by $-e_{1}+2 e_{2}-e_{3},-2 e_{1}-e_{2}+3 e_{3}$ and $-3 e_{1}+e_{2}+2 e_{3}$. Then $\mathbf{Z}^{3} / V \cong \mathbf{Z} \oplus \mathbf{Z} / 5 \mathbf{Z}$. And there is an isomorphism which corresponds $e_{1}, e_{2}$ and $e_{3}$ to $(1,0),(1,1)$ and $(1,2)$, respectively.

