Токуо J. Матн. Vol. 25, No. 2, 2002

Multiplicity and Hilbert-Kunz Multiplicity of Monoid Rings

Kazufumi ETO

Nippon Institute of Technology (Communicated by K. Kobayasi)

In this paper, we will give a method to compute the multiplicity and the Hilbert-Kunz multiplicity of monoid rings. The multiplicity and the Hilbert-Kunz multiplicity are fundamental invariants of rings. For example, the multiplicity (resp. the Hilbert-Kunz multiplicity) of a regular local ring equals to one. Monoid rings are defined by lattice ideals, which are binomial ideals I in a polynomial ring R over a field such that any monomial is a non zero divisor on R/I. Affine semigroup rings are monoid rings. Hence we want to extend the thoery of affine semigroup rings to that of monoid rings.

1. Main Result.

Let N > 0 be an integer and **Z** the ring of integers. For $\alpha \in \mathbf{Z}^N$, we denote the *i*-th entry of α by α_i . We say $\alpha > 0$ if $\alpha \neq 0$ and $\alpha_i \ge 0$ for each *i*. And $\alpha > \alpha'$ if $\alpha - \alpha' > 0$. Let $R = k[X_1, \dots, X_N]$ be a polynomial ring over a field *k*. For $\alpha > 0$, we simply write X^{α} in place of $\prod_{i=1}^N X_i^{\alpha_i}$.

For a positive submodule V of \mathbb{Z}^N of rank r, we define an ideal I(V) of R, which is generated by all binomials $X^{\alpha} - X^{\beta}$ with $\alpha - \beta \in V$ (we say that V is positive if it is contained in the kernel of a map $\mathbb{Z}^N \to \mathbb{Z}$ which is defined by positive integers). Put d = N - r. Then R/I(V) is naturally a \mathbb{Z}^d -graded ring, which is called a monoid ring. Further, there is a positive submodule V' of \mathbb{Z}^N of rank r containing V such that \mathbb{Z}^N/V' is torsion free. That is, $\mathbb{Z}^N/V \cong \mathbb{Z}^N/V' \oplus T$, where $\mathbb{Z}^N/V' \cong \mathbb{Z}^d$ and T is a torsion module. Hence we can see an element of \mathbb{Z}^N/V as a pair (α, β) where $\alpha \in \mathbb{Z}^d$ is a degree element and $\beta \in T$ is a torsion element. Put t = |T| (if $T = \{0\}$, put t = 1). Let A = R/I(V) and A' = R/I(V'). For each $\alpha \in \mathbb{Z}^d$, we denote the degree α component of the \mathbb{Z}^d -graded ring A (resp. A') by A_{α} (resp. A'_{α}). It is clear dim_k $A_{\alpha} \leq t$ and dim_k $A'_{\alpha} \leq 1$ for $\alpha \in \mathbb{Z}^d$ and dim_k $A_{\alpha} \geq \dim_k A_{\alpha'}$ if $\alpha > \alpha'$ and if there is a monomial of A of the degree $\alpha - \alpha'$.

EXAMPLE. Let V be a submodule of \mathbb{Z}^3 generated by $-e_1 + 2e_2 - e_3$, $-2e_1 - e_2 + 3e_3$ and $-3e_1 + e_2 + 2e_3$. Then $\mathbb{Z}^3/V \cong \mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$. And there is an isomorphism which corresponds e_1 , e_2 and e_3 to (1, 0), (1, 1) and (1, 2), respectively.

Received January 16, 2001; revised February 26, 2002