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1. Introduction

Let C (resp. R) be the complex (resp. real) number field. We consider a connected simply
connected complex simple Lie group GC and its connected noncompact simple real form G.
In this article we shall always fix a maximal compact subgroupK ofG, and assume that rank
G = rank K . This assumption is equivalent to G is inner. Let g and k be respectively the Lie
algebras ofG andK . Let θ be the Cartan involution which stabilizesK . Then g is decompsed
by g = k ⊕ p, where p is the eigenspace of θ in g with the eigenvalue −1. Let gC be the Lie
algebra of GC. We shall denote, for each subspace v of g, by vC the complexification of v in
gC. pC is aK-module by the adjoint action ofK . Let B be a maximal abelian subgroup of K .
Then B is also a maximal abelian subgroup (Cartan subgroup) of G. Let b be the Lie algebra
of B. Then the root system Σ of the pair (gC, bC) is decomposed by Σ = ΣK ∪Σn, where
ΣK (resp. Σn) is the set of all compact (resp. noncompact) roots in Σ . Then ΣK is also the
root system of (kC, bC). We choose a positive root system PK , and always fix it.

Let us state our purpose of this article. Let µ be a PK -dominant integral form on bC and
(πµ, Vµ) a simple K-module with highest weight µ. We consider a simple Harish-Chandra
(g,K)-module U(gC)Vµ which contains (πµ, Vµ) with multiplicity one, where U(gC) is the
universal enveloping algebra of gC. Let pC ⊗ pC ⊗ Vµ be the tensor K-module. Canonically
this space has a unitary K-module structure. We define a K-linear homomorphism � of
pC ⊗ pC ⊗ Vµ to U(gC)Vµ by �(X ⊗ Y ⊗ v) = XYv for X,Y ∈ pC, v ∈ Vµ. Let V be a
finite K-module. We define a projection operator Pµ on V by

Pµ(v) = degπµ

∫
K

kv traceπµ(k)dk for v ∈ V ,(1.1)

where degπµ = dimVµ and dk is the Haar measure on K normalized as
∫
K dk = 1. Since

Pµ� = �Pµ, � induces aK-module linear homomorphism ofM(µ) = Pµ(pC ⊗ pC ⊗Vµ)
to Vµ ⊂ U(gC)Vµ. Let m = m(µ) be the multiplicity of Vµ in M(µ). M(µ) is decomposed

by M(µ) = ⊕m
j=1 U(kC)vj , where vj is the highest weight vector of the simple K-module

U(kC)vj and U(kC) is the universal enveloping algebra of kC. Let v(µ) be the highest weight
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