On Two Step Tensor Modules of the Maximal Compact Subgroups of Inner Type Noncompact Real Simple Lie Groups

Hisaichi MIDORIKAWA

Tsuda College

1. Introduction

Let **C** (resp. **R**) be the complex (resp. real) number field. We consider a connected simply connected complex simple Lie group $G_{\mathbf{C}}$ and its connected noncompact simple real form G. In this article we shall always fix a maximal compact subgroup K of G, and assume that rank $G = \operatorname{rank} K$. This assumption is equivalent to G is inner. Let \mathfrak{g} and \mathfrak{k} be respectively the Lie algebras of G and K. Let θ be the Cartan involution which stabilizes K. Then \mathfrak{g} is decompsed by $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, where \mathfrak{p} is the eigenspace of θ in \mathfrak{g} with the eigenvalue -1. Let $\mathfrak{g}_{\mathbf{C}}$ be the Lie algebra of $G_{\mathbf{C}}$. We shall denote, for each subspace \mathfrak{v} of \mathfrak{g} , by $\mathfrak{v}_{\mathbf{C}}$ the complexification of \mathfrak{v} in $\mathfrak{g}_{\mathbf{C}}$. $\mathfrak{p}_{\mathbf{C}}$ is a K-module by the adjoint action of K. Let B be a maximal abelian subgroup of K. Then B is also a maximal abelian subgroup (Cartan subgroup) of G. Let \mathfrak{b} be the Lie algebra of B. Then the root system Σ of the pair ($\mathfrak{g}_{\mathbf{C}}$, $\mathfrak{b}_{\mathbf{C}}$) is decomposed by $\Sigma = \Sigma_K \cup \Sigma_n$, where Σ_K (resp. Σ_n) is the set of all compact (resp. noncompact) roots in Σ . Then Σ_K is also the root system of ($\mathfrak{k}_{\mathbf{C}}$, $\mathfrak{b}_{\mathbf{C}}$). We choose a positive root system P_K , and always fix it.

Let us state our purpose of this article. Let μ be a P_K -dominant integral form on $\mathfrak{b}_{\mathbb{C}}$ and (π_{μ}, V_{μ}) a simple *K*-module with highest weight μ . We consider a simple Harish-Chandra (\mathfrak{g}, K) -module $U(\mathfrak{g}_{\mathbb{C}})V_{\mu}$ which contains (π_{μ}, V_{μ}) with multiplicity one, where $U(\mathfrak{g}_{\mathbb{C}})$ is the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$. Let $\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ be the tensor *K*-module. Canonically this space has a unitary *K*-module structure. We define a *K*-linear homomorphism ϖ of $\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ to $U(\mathfrak{g}_{\mathbb{C}})V_{\mu}$ by $\varpi(X \otimes Y \otimes v) = XYv$ for $X, Y \in \mathfrak{p}_{\mathbb{C}}, v \in V_{\mu}$. Let *V* be a finite *K*-module. We define a projection operator P_{μ} on *V* by

(1.1)
$$P_{\mu}(v) = \deg \pi_{\mu} \int_{K} k v \,\overline{trace\pi_{\mu}(k)} dk \quad \text{for } v \in V \,,$$

where deg π_{μ} = dim V_{μ} and dk is the Haar measure on K normalized as $\int_{K} dk = 1$. Since $P_{\mu}\varpi = \varpi P_{\mu}, \varpi$ induces a K-module linear homomorphism of $M(\mu) = P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ to $V_{\mu} \subset U(\mathfrak{g}_{\mathbb{C}})V_{\mu}$. Let $m = m(\mu)$ be the multiplicity of V_{μ} in $M(\mu)$. $M(\mu)$ is decomposed by $M(\mu) = \bigoplus_{j=1}^{m} U(\mathfrak{k}_{\mathbb{C}})v_{j}$, where v_{j} is the highest weight vector of the simple K-module $U(\mathfrak{k}_{\mathbb{C}})v_{j}$ and $U(\mathfrak{k}_{\mathbb{C}})$ is the universal enveloping algebra of $\mathfrak{k}_{\mathbb{C}}$. Let $v(\mu)$ be the highest weight

Received February 15, 2002; revised November 12, 2003