On Two Step Tensor Modules of the Maximal Compact Subgroups of Inner Type Noncompact Real Simple Lie Groups

Hisaichi MIDORIKAWA

Tsuda College

1. Introduction

Let \mathbf{C} (resp. \mathbf{R}) be the complex (resp. real) number field. We consider a connected simply connected complex simple Lie group $G_{\mathbf{C}}$ and its connected noncompact simple real form G. In this article we shall always fix a maximal compact subgroup K of G, and assume that rank $G=\operatorname{rank} K$. This assumption is equivalent to G is inner. Let \mathfrak{g} and \mathfrak{k} be respectively the Lie algebras of G and K. Let θ be the Cartan involution which stabilizes K. Then \mathfrak{g} is decompsed by $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$, where \mathfrak{p} is the eigenspace of θ in \mathfrak{g} with the eigenvalue -1 . Let $\mathfrak{g}_{\mathbf{C}}$ be the Lie algebra of $G_{\mathbf{C}}$. We shall denote, for each subspace \mathfrak{v} of \mathfrak{g}, by $\mathfrak{v}_{\mathbf{C}}$ the complexification of \mathfrak{v} in $\mathfrak{g}_{\mathbf{C}} \cdot \mathfrak{p}_{\mathbf{C}}$ is a K-module by the adjoint action of K. Let B be a maximal abelian subgroup of K. Then B is also a maximal abelian subgroup (Cartan subgroup) of G. Let \mathfrak{b} be the Lie algebra of B. Then the root system Σ of the pair ($\mathfrak{g}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}$) is decomposed by $\Sigma=\Sigma_{K} \cup \Sigma_{n}$, where Σ_{K} (resp. Σ_{n}) is the set of all compact (resp. noncompact) roots in Σ. Then Σ_{K} is also the root system of $\left(\mathfrak{k}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$. We choose a positive root system P_{K}, and always fix it.

Let us state our purpose of this article. Let μ be a P_{K}-dominant integral form on $\mathfrak{b}_{\mathbf{C}}$ and $\left(\pi_{\mu}, V_{\mu}\right)$ a simple K-module with highest weight μ. We consider a simple Harish-Chandra (\mathfrak{g}, K)-module $U\left(\mathfrak{g}_{\mathbf{C}}\right) V_{\mu}$ which contains $\left(\pi_{\mu}, V_{\mu}\right)$ with multiplicity one, where $U\left(\mathfrak{g}_{\mathbf{C}}\right)$ is the universal enveloping algebra of $\mathfrak{g}_{\mathbf{C}}$. Let $\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ be the tensor K-module. Canonically this space has a unitary K-module structure. We define a K-linear homomorphism ϖ of $\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ to $U\left(\mathfrak{g}_{\mathbf{C}}\right) V_{\mu}$ by $\varpi(X \otimes Y \otimes v)=X Y v$ for $X, Y \in \mathfrak{p}_{\mathbf{C}}, v \in V_{\mu}$. Let V be a finite K-module. We define a projection operator P_{μ} on V by

$$
\begin{equation*}
P_{\mu}(v)=\operatorname{deg} \pi_{\mu} \int_{K} k v \overline{\operatorname{trace} \pi_{\mu}(k)} d k \quad \text { for } v \in V \tag{1.1}
\end{equation*}
$$

where $\operatorname{deg} \pi_{\mu}=\operatorname{dim} V_{\mu}$ and $d k$ is the Haar measure on K normalized as $\int_{K} d k=1$. Since $P_{\mu} \varpi=\varpi P_{\mu}, \varpi$ induces a K-module linear homomorphism of $M(\mu)=P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ to $V_{\mu} \subset U\left(\mathfrak{g}_{\mathbf{C}}\right) V_{\mu}$. Let $m=m(\mu)$ be the multiplicity of V_{μ} in $M(\mu)$. $M(\mu)$ is decomposed by $M(\mu)=\bigoplus_{j=1}^{m} U\left(\mathfrak{k}_{\mathbf{C}}\right) v_{j}$, where v_{j} is the highest weight vector of the simple K-module $U\left(\mathfrak{k}_{\mathbf{C}}\right) v_{j}$ and $U\left(\mathfrak{k}_{\mathbf{C}}\right)$ is the universal enveloping algebra of ${ }^{\mathfrak{k}} \mathbf{C}$. Let $v(\mu)$ be the highest weight

