On the units and the class numbers of certain composita of two quadratic fields

By Shin-ichi KATAYAMA,^{*)} Claude LEVESQUE,^{**)} and Toru NAKAHARA^{***)}

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1999)

1. Preliminaries. Let k_1 be a real quadratic field and $\varepsilon_1 (> 1)$ be the fundamental unit of k_1 . We shall fix a unit $\eta_1 = \varepsilon_1^{2i+1}$, which is an odd power of the fundamental unit ε_1 with $i \ge 0$. Then there exists some positive integer M such that η_1 is written in the form

$$\eta_1 = \frac{M + \sqrt{M^2 \pm 4}}{2}$$

Let $\bar{\eta}_1$ be the field conjugate of η_1 . Put $D = M^2 \pm 4$. Then D is not necessarily square-free, and we denote the square-free part of D by D_0 . When we use the notation $\pm y$ or $\mp z$, $\pm y$ and -z correspond to the upper case $D = M^2 \pm 4$, which will be called the *plus case*, and -y and $\pm z$ correspond to the lower case $D = M^2 - 4$, which will be called the *minus case*.

Put

$$g_n = \eta_1^n + \bar{\eta}_1^n, \qquad h_n = \frac{\eta_1^n - \bar{\eta}_1^n}{\sqrt{D}}.$$

Then the sequences $\{g_n\}_{n \in \mathbb{N}}$ and $\{h_n\}_{n \in \mathbb{N}}$ are the non-degenerated second order linear recurrence sequences defined by

$$g_{n+2} = Mg_{n+1} \pm g_n, \quad h_{n+2} = Mh_{n+1} \pm h_n,$$

with the initial terms $g_0 = 2$, $g_1 = M$ and $h_0 = 0$, $h_1 = 1$.

The purpose of this note is to report our results on the class number h_K and the unit group E_K of the biquadratic field $K = \mathbf{Q}(\sqrt{D}, \sqrt{h_{2n+1}^2 - 1})$: see Theorems 1 and 2. Only sketches of proofs will be provided and details will be published elsewhere.

For any $a, b \in \mathbb{Z} \setminus \{0\}$, we put $a \sim b$ if and only if ab is a perfect square. So

$$\begin{pmatrix} a_1\\b_1 \end{pmatrix} \sim \begin{pmatrix} a_2\\b_2 \end{pmatrix} \iff a_1 \sim a_2 \text{ and } b_1 \sim b_2.$$

Moreover, $M^2 - D = \mp 4$ and $g_{2n+1}^2 - Dh_{2n+1}^2 = \mp 4$ imply

$$g_{2n+1}^2 - M^2 = D(h_{2n+1}^2 - 1).$$

Then we shall verify that $h_{2n+1}^2 - 1 \not\sim 1$ and $h_{2n+1}^2 - 1 \not\sim D$ except for finitely many indices n. So except for finitely many indices n, we will construct a family of real bicyclic biquadratic fields

$$K = \mathbf{Q}\left(\sqrt{D}, \sqrt{h_{2n+1}^2 - 1}\right) \quad (n \ge 1).$$

Then K has three subfields:

$$k_1 = \mathbf{Q}\left(\sqrt{D}\right), \quad k_2 = \mathbf{Q}\left(\sqrt{h_{2n+1}^2 - 1}\right),$$

 $k_3 = \mathbf{Q}\left(\sqrt{g_{2n+1}^2 - M^2}\right).$

We have a unit η_2 in k_2 defined by

$$\eta_2 = h_{2n+1} + \sqrt{h_{2n+1}^2 - 1},$$

and we will denote by ε_2 the fundamental unit of k_2 .

Concerning the recurrence sequence $\{g_n\}_{n \in \mathbb{N}}$, one can verify $M|g_{2n+1}$ by induction. So we also have a unit η_3 in $k_3 = \mathbf{Q}(\sqrt{(g_{2n+1}/M)^2 - 1})$, namely

$$\eta_3 = g_{2n+1}/M + \sqrt{(g_{2n+1}/M)^2 - 1}$$

and we will denote by ε_3 the fundamental unit of k_3 .

Let E be the group $\langle -1, \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle$. Then the group index $[E_K : E]$ is called the unit index of K and is known to be 1, 2 or 4 in general. Let us quote a result of Shorey-Stewart [14].

Lemma 1. Let d be an integer > 1. Then there exists a constant C_1 , which is effectively computable in terms of M and d such that for any $n \ge C_1$,

$$g_n \not\sim d$$
 and $h_n \not\sim d$.

Let us list several properties of the above two linear recurrences $\{g_n\}_{n \in \mathbb{N}}$ and $\{h_n\}_{n \in \mathbb{N}}$.

Proposition 1. For any index $n \ge 0$,

- (i) $h_{2n+1} + (\mp 1)^n = g_n h_{n+1},$
- (ii) $h_{2n+1} (\mp 1)^n = g_{n+1}h_n$,
- (iii) $g_{2n+1} + (\mp 1)^n M = g_n g_{n+1},$

^{*)} Department of Mathematical Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima 770–8502.

^{**)} Département de Mathématiques et de Statistique, Université Laval, Canada.

^{***)} Department of Mathematics, Saga University, 1 Honjo-cho, Saga 840–8502.