On the units and the class numbers of certain composita of two quadratic fields

By Shin-ichi Katayama, ${ }^{*)}$ Claude Levesque, ${ }^{* *)}$ and Toru Nakahara***)
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 1999)

1. Preliminaries. Let k_{1} be a real quadratic field and $\varepsilon_{1}(>1)$ be the fundamental unit of k_{1}. We shall fix a unit $\eta_{1}=\varepsilon_{1}^{2 i+1}$, which is an odd power of the fundamental unit ε_{1} with $i \geq 0$. Then there exists some positive integer M such that η_{1} is written in the form

$$
\eta_{1}=\frac{M+\sqrt{M^{2} \pm 4}}{2}
$$

Let $\bar{\eta}_{1}$ be the field conjugate of η_{1}. Put $D=M^{2} \pm 4$. Then D is not necessarily square-free, and we denote the square-free part of D by D_{0}. When we use the notation $\pm y$ or $\mp z,+y$ and $-z$ correspond to the upper case $D=M^{2}+4$, which will be called the plus case, and $-y$ and $+z$ correspond to the lower case $D=M^{2}-4$, which will be called the minus case.

Put

$$
g_{n}=\eta_{1}^{n}+\bar{\eta}_{1}^{n}, \quad h_{n}=\frac{\eta_{1}^{n}-\bar{\eta}_{1}^{n}}{\sqrt{D}}
$$

Then the sequences $\left\{g_{n}\right\}_{n \in \mathbf{N}}$ and $\left\{h_{n}\right\}_{n \in \mathbf{N}}$ are the non-degenerated second order linear recurrence sequences defined by

$$
g_{n+2}=M g_{n+1} \pm g_{n}, \quad h_{n+2}=M h_{n+1} \pm h_{n}
$$

with the initial terms $g_{0}=2, g_{1}=M$ and $h_{0}=0$, $h_{1}=1$.

The purpose of this note is to report our results on the class number h_{K} and the unit group E_{K} of the biquadratic field $K=\mathbf{Q}\left(\sqrt{D}, \sqrt{h_{2 n+1}^{2}-1}\right)$: see Theorems 1 and 2. Only sketches of proofs will be provided and details will be published elsewhere.

For any $a, b \in \mathbf{Z} \backslash\{0\}$, we put $a \sim b$ if and only if $a b$ is a perfect square. So

$$
\binom{a_{1}}{b_{1}} \sim\binom{a_{2}}{b_{2}} \Longleftrightarrow a_{1} \sim a_{2} \text { and } b_{1} \sim b_{2}
$$

[^0]Moreover, $M^{2}-D=\mp 4$ and $g_{2 n+1}^{2}-D h_{2 n+1}^{2}=\mp 4$ imply

$$
g_{2 n+1}^{2}-M^{2}=D\left(h_{2 n+1}^{2}-1\right)
$$

Then we shall verify that $h_{2 n+1}^{2}-1 \nsim 1$ and $h_{2 n+1}^{2}-1 \nsim D$ except for finitely many indices n. So except for finitely many indices n, we will construct a family of real bicyclic biquadratic fields

$$
K=\mathbf{Q}\left(\sqrt{D}, \sqrt{h_{2 n+1}^{2}-1}\right) \quad(n \geq 1)
$$

Then K has three subfields:

$$
\begin{gathered}
k_{1}=\mathbf{Q}(\sqrt{D}), \quad k_{2}=\mathbf{Q}\left(\sqrt{h_{2 n+1}^{2}-1}\right) \\
k_{3}=\mathbf{Q}\left(\sqrt{g_{2 n+1}^{2}-M^{2}}\right)
\end{gathered}
$$

We have a unit η_{2} in k_{2} defined by

$$
\eta_{2}=h_{2 n+1}+\sqrt{h_{2 n+1}^{2}-1}
$$

and we will denote by ε_{2} the fundamental unit of k_{2}.
Concerning the recurrence sequence $\left\{g_{n}\right\}_{n \in \mathbf{N}}$, one can verify $M \mid g_{2 n+1}$ by induction. So we also have a unit η_{3} in $k_{3}=\mathbf{Q}\left(\sqrt{\left(g_{2 n+1} / M\right)^{2}-1}\right)$, namely

$$
\eta_{3}=g_{2 n+1} / M+\sqrt{\left(g_{2 n+1} / M\right)^{2}-1}
$$

and we will denote by ε_{3} the fundamental unit of k_{3}.
Let E be the group $\left\langle-1, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle$. Then the group index $\left[E_{K}: E\right]$ is called the unit index of K and is known to be 1,2 or 4 in general. Let us quote a result of Shorey-Stewart [14].

Lemma 1. Let d be an integer >1. Then there exists a constant C_{1}, which is effectively computable in terms of M and d such that for any $n \geq C_{1}$,

$$
g_{n} \nsucc d \text { and } h_{n} \nsim d .
$$

Let us list several properties of the above two linear recurrences $\left\{g_{n}\right\}_{n \in \mathbf{N}}$ and $\left\{h_{n}\right\}_{n \in \mathbf{N}}$.

Proposition 1. For any index $n \geq 0$,
(i) $h_{2 n+1}+(\mp 1)^{n}=g_{n} h_{n+1}$,
(ii) $h_{2 n+1}-(\mp 1)^{n}=g_{n+1} h_{n}$,
(iii) $g_{2 n+1}+(\mp 1)^{n} M=g_{n} g_{n+1}$,

[^0]: *) Department of Mathematical Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima 770-8502.
 **) Département de Mathématiques et de Statistique, Université Laval, Canada.
 ***) Department of Mathematics, Saga University, 1 Honjo-cho, Saga 840-8502.

