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“Hasse principle” for symmetric and alternating groups

By Takashi Ono∗) and Hideo Wada∗∗)

(Communicated by Shokichi Iyanaga, m. j. a., April 12, 1999)

1. Notation and results. Extending the
usage of language in Galois cohomology we can speak
of the Hasse principle for any group G (cf. [1]). We
know that the principle holds for G = abelian, di-
hedral, quaternion, PSL2(Z), PSL2(Fp) and free
groups(cf. [1], [2]). The proof in [2] works as well
for free groups generated by any set. In this paper,
we prove the following

Theorem. For any natural number n, the sym-
metric group Sn and the alternating group An enjoy
the Hasse principle.

We may assume that n ≥ 4, since the case n ≤ 3
are already settled. As is well known G = Sn, An

are generated by two elements: G = 〈s, t〉. To be
more precise,

for G = Sn, we have s = (234 . . . n), t = (12),(1)

for G = An(n odd), s = (345 . . . n), t = (123),(2)

for G = An(n even), s = (234 . . . n), t = (123).(3)

Remark. In general, for any group G with two
generators s, t let f be a cocycle on G which is nor-
malized at s and locally trivial. The Hasse princi-
ple means that f is trivial. From the basic relation
f(st) = f(s)f(t)s with f(s) = 1, f(t) = a−1at =
a−1tat−1, f(st) = b−1bst = b−1stbt−1s−1, we infer
that

st ∼ sa−1ta, (conjugacy in G).(4)

Then the Hasse principle will be proved for G if we
find c in the centralizer of s so that a−1ta = c−1tc

using (4).
2. Proof of the Theorem.

2.1. G = Sn. From (1), we have

st = (23 . . . n)(12) = (13 . . . n2)
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an n-cycle. Hence by (4), sa−1ta is also an n-cycle.
If we write

a−1 =
(

1 2 3 . . . n

i1 i2 i3 . . . in

)
(5)

then sa−1ta = (23 . . . n)(i1i2). Since this is an n-
cycle we have a−1ta = (i1i2) = (1 j), j ≥ 2. On
the other hand, if we take c so that c−1 = sj−2, then
one verifies easily that c−1tc = (1 j). In view of the
remark, this complete the Proof of the Theorem for
G = Sn.

2.2. G = An (n odd). From (2), we have

st = (345 . . . n)(123) = (124 . . . n3)

an n-cycle. Hence, by (4), sa−1ta is also an n-cycle.
Write a−1 as in (5). Then sa−1ta = (34 . . . n)(i1i2i3).
Since this must be an n-cycle, we have a−1ta =
(i1i2i3) = (12j) or = (1j2), j ≥ 3. Here, however,
the second 3-cycle (1j2) is impossible. In fact, if we
had

st = (124 . . . n3)

∼ (34 . . . n)(1j2) = (21 j + 1 . . . n3 . . . j)

then we would have u(st)u−1 = (21 j +1 . . . n3 . . . j)
with

u =
(

1 2 3 4 . . . n

2 1 j j + 1 . . . . . .

)
= (12)sj−3 /∈ An.

If u1(st)u−1
1 = u(st)u−1, then (u−1u1)st(u−1u1)−1

= st. From this equation, we infer that u−1u1 is a
power of st. So u1 is not in An. Therefore st and
(34 . . . n)(1j2) cannot be conjugate in An, a contra-
diction. On the other hand, if we take c so that
c−1 = sj−3, then one verifies that c−1tc = (12j). In
view of the remark, this proves the Theorem for An

(n odd).
2.3. G = An (n even). From (3), we have

st = (234 . . . n)(123) = (13)(245 . . . n).

If we write a−1 as in (5), then a−1ta = (i1i2i3) and,
by (4), st is conjugate to sa−1ta = (234 . . . n)(i1i2i3).
Since st has no fixed points, we may assume that
(i1i2i3) = (1ij).


