Homotopy groups of compact exceptional Lie groups

By Hideyuki KACHI^{*)} and Mamoru MIMURA^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., April 12, 1999)

We consider homotopy groups of compact, connected, simply connected simple exceptional Lie groups G; they are classified as G_2 , F_4 , E_6 , E_7 and E_8 . By the Hopf theorem we have

$$H^*(G;Q) \cong \Lambda(x_1, x_2, \cdots, x_\ell),$$

where ℓ is the rank of G, deg x_i is odd and $\sum_{i=1}^{\ell} \deg x_i$ is the dimension of G. Let Xbe the direct product of spheres of dimensions deg $x_1, \dots, \deg x_{\ell}$, then, from Serre's C-theory [10], $\pi_i(G)$ are C-isomorphic to $\pi_i(X)$ for all i, where Cis the class of finite abelian groups. Therefore the rank of $\pi_q(G)$ is equal to the number of such i that deg x_i is equal to q, particularly if q is even, then $\pi_q(G)$ is finite. It is a classical fact that $\pi_2(G) = 0$ and $\pi_3(G) \cong Z$.

According to Bott-Samelson [1], we have

$$\begin{aligned} \pi_i(E_6) &= 0 \text{ for } 4 \le i \le 8, & \pi_9(E_6) \cong Z, \\ \pi_i(E_7) &= 0 \text{ for } 4 \le i \le 10, & \pi_{11}(E_7) \cong Z, \\ \pi_i(E_8) &= 0 \text{ for } 4 \le i \le 14, & \pi_{15}(E_8) \cong Z. \end{aligned}$$

For $i \leq 23$, the homotopy groups $\pi_i(G_2)$ and $\pi_i(F_4)$ are determined in [7] by the second author. For $G = E_6$, E_7 and E_8 , the 2-primary components of homotopy group $\pi_i(G)$ are determined in [5] by the first author for $i \leq 22$, $i \leq 25$ and $i \leq 28$ respectively.

The purpose of this paper is to calculate $\pi_i(G : 3)$ the 3-primary components of homotopy groups $\pi_i(G)$ by making use of usual methods, such as the killing-homotopy method [2] and homotopy exact sequences associated with various fibrations.

Let $B_1(2n-1,2n+3)$ be a S^{2n-1} -bundle over S^{2n+3} with the characteristic element $\alpha_1(2n-1) \in \pi_{2n+2}(S^{2n-1}:3)$ so that $H^*(B_1(2n-1,2n+3);Z_3) \cong \Lambda(x_{2n-1},x_{2n+3})$, where $x_{2n+3} = \wp^1 x_{2n-1}$. Let $B_2(2n-1,2n+7)$ be a S^{2n-1} -bundle over S^{2n+7} with the characteristic element $\alpha_2(2n-1) \in \pi_{2n+6}(S^{2n-1}:3)$ so that $H^*(B_2(2n-1,2n+7);Z_3) \cong \Lambda(x_{2n-1},x_{2n+7})$, where $x_{2n+7} = \Phi x_{2n-1}; \Phi$ is the secondary cohomology operation associated with the relation $\wp^1\beta\wp^1 - \beta\wp^2 - \wp^2\beta = 0.$

Homotopy group of G_2 . It is known [7] that G_2 is 3-equivalent to $B_2(3,11)$, and so $\pi_i(G_2)$ are C_3 -isomorphic to $\pi_i(B_2(3,11))$, where C_3 is the class of finite abelian groups without 3 torsion. Thus $\pi_i(G_2:3)$ can be calculated from the homotopy exact sequence

$$\cdots \to \pi_{i+1}(S^{11}) \to \pi_i(S^3) \to \pi_i(B_2(3,11))$$
$$\to \pi_i(S^{11}) \to \pi_{i-1}(S^3) \to \cdots$$

associated with the bundle $B_2(3,11)/S^3 = S^{11}$.

Homotopy group of F_4 . Let K be a finite complex constructed by Harper in [3] such that

$$H^*(K; Z_3) \cong Z_3[x_8]/(x_8^3) \otimes \Lambda(x_3, x_7),$$

where $x_7 = \wp^1 x_3$ and $x_8 = \beta x_7$. Then, according to Harper [3], F_4 is 3-equivalent to $K \times B_1(11, 15)$.

We consider the 3-connective fiber space \tilde{F}_4 over F_4 by killing $\pi_3(F_4)$ so that $\pi_i(\tilde{F}_4) \cong \pi_i(F_4)$ for $i \ge 4$. Then we have that \tilde{F}_4 is 3-equivalent to $\tilde{K} \times B_1(11, 15)$, where \tilde{K} is the 3-connective fiber space over K and $H^*(\tilde{K}; Z_3) \cong Z_3[y_{18}] \otimes \Lambda(y_{19}, y_{23})$, where $y_{19} = \beta y_{18}$ and $y_{23} = \wp^1 \beta y_{18}$. Now we approximate \tilde{K} by a finite cell complex $K' = S^{18} \cup_{3\iota_{18}} e^{19} \cup e^{23}$ such that $\pi_i(\tilde{K})$ is \mathcal{C}_3 -isomorphic to $\pi_i(K')$ for $i \le 34$.

Then we have the homotopy exact sequence

for $i \leq 34$, where $f : S^{22} \to S^{18} \cup_{3\iota_{18}} e^{19}$ is the attaching map for e^{23} . Thus we can obtain $\pi_i(F_4 : 3)$ for $i \leq 34$. (Recall that $\pi_i(B_1(11, 15))$ is calculated in [9]).

Homotopy group of E_6 . According to Harris [4], E_6 is 3 equivalent to $F_4 \times B_2(9, 17)$. Thus $\pi_i(E_6:3)$ can be read off from those of F_4 and $B_2(9, 17)$, which is calculated from the homotopy exact sequence associated with the bundle $B_2(9, 17)/S^9 = S^{17}$.

Homotopy group of E_8 . The 3-connective fiber space \tilde{E}_8 over E_8 has the following mod 3 co-

^{*)} Department of Mathematical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390–8621.

^{**)} Department of Mathematics, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700–8530.