Homotopy groups of compact exceptional Lie groups

By Hideyuki $\mathrm{Kachi}^{*)}$ and Mamoru Mimura**)
(Communicated by Heisuke Hironaka, m. J. A., April 12, 1999)

We consider homotopy groups of compact, connected, simply connected simple exceptional Lie groups G; they are classified as $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8}. By the Hopf theorem we have

$$
H^{*}(G ; Q) \cong \Lambda\left(x_{1}, x_{2}, \cdots, x_{\ell}\right)
$$

where ℓ is the rank of $G, \operatorname{deg} x_{i}$ is odd and $\sum_{i=1}^{\ell} \operatorname{deg} x_{i}$ is the dimension of G. Let X be the direct product of spheres of dimensions $\operatorname{deg} x_{1}, \cdots, \operatorname{deg} x_{\ell}$, then, from Serre's \mathcal{C}-theory [10], $\pi_{i}(G)$ are \mathcal{C}-isomorphic to $\pi_{i}(X)$ for all i, where \mathcal{C} is the class of finite abelian groups. Therefore the rank of $\pi_{q}(G)$ is equal to the number of such i that $\operatorname{deg} x_{i}$ is equal to q, particularly if q is even, then $\pi_{q}(G)$ is finite. It is a classical fact that $\pi_{2}(G)=0$ and $\pi_{3}(G) \cong Z$.

According to Bott-Samelson [1], we have

$$
\begin{aligned}
& \pi_{i}\left(E_{6}\right)=0 \text { for } 4 \leq i \leq 8, \quad \pi_{9}\left(E_{6}\right) \cong Z \\
& \pi_{i}\left(E_{7}\right)=0 \text { for } 4 \leq i \leq 10, \quad \pi_{11}\left(E_{7}\right) \cong Z \\
& \pi_{i}\left(E_{8}\right)=0 \text { for } 4 \leq i \leq 14, \quad \pi_{15}\left(E_{8}\right) \cong Z
\end{aligned}
$$

For $i \leq 23$, the homotopy groups $\pi_{i}\left(G_{2}\right)$ and $\pi_{i}\left(F_{4}\right)$ are determined in [7] by the second author. For $G=E_{6}, E_{7}$ and E_{8}, the 2-primary components of homotopy group $\pi_{i}(G)$ are determined in [5] by the first author for $i \leq 22, i \leq 25$ and $i \leq 28$ respectively.

The purpose of this paper is to calculate $\pi_{i}(G$: 3) the 3-primary components of homotopy groups $\pi_{i}(G)$ by making use of usual methods, such as the killing-homotopy method [2] and homotopy exact sequences associated with various fibrations.

Let $B_{1}(2 n-1,2 n+3)$ be a $S^{2 n-1}$-bundle over $S^{2 n+3}$ with the characteristic element $\alpha_{1}(2 n-$ 1) $\in \pi_{2 n+2}\left(S^{2 n-1}: 3\right)$ so that $H^{*}\left(B_{1}(2 n-1,2 n+\right.$ $\left.3) ; Z_{3}\right) \cong \Lambda\left(x_{2 n-1}, x_{2 n+3}\right)$, where $x_{2 n+3}=\wp^{1} x_{2 n-1}$. Let $B_{2}(2 n-1,2 n+7)$ be a $S^{2 n-1}$-bundle over $S^{2 n+7}$ with the characteristic element $\alpha_{2}(2 n-1) \in$ $\pi_{2 n+6}\left(S^{2 n-1}: 3\right)$ so that $H^{*}\left(B_{2}(2 n-1,2 n+7) ; Z_{3}\right) \cong$ $\Lambda\left(x_{2 n-1}, x_{2 n+7}\right)$, where $x_{2 n+7}=\Phi x_{2 n-1} ; \Phi$ is the

[^0]secondary cohomology operation associated with the relation $\wp^{1} \beta \wp^{1}-\beta \wp^{2}-\wp^{2} \beta=0$.

Homotopy group of $\boldsymbol{G}_{\mathbf{2}}$. It is known [7] that G_{2} is 3 -equivalent to $B_{2}(3,11)$, and so $\pi_{i}\left(G_{2}\right)$ are \mathcal{C}_{3}-isomorphic to $\pi_{i}\left(B_{2}(3,11)\right)$, where \mathcal{C}_{3} is the class of finite abelian groups without 3 torsion. Thus $\pi_{i}\left(G_{2}: 3\right)$ can be calculated from the homotopy exact sequence

$$
\begin{aligned}
\cdots & \rightarrow \pi_{i+1}\left(S^{11}\right) \rightarrow \pi_{i}\left(S^{3}\right) \rightarrow \pi_{i}\left(B_{2}(3,11)\right) \\
& \rightarrow \pi_{i}\left(S^{11}\right) \rightarrow \pi_{i-1}\left(S^{3}\right) \rightarrow \cdots
\end{aligned}
$$

associated with the bundle $B_{2}(3,11) / S^{3}=S^{11}$.
Homotopy group of $\boldsymbol{F}_{\mathbf{4}}$. Let K be a finite complex constructed by Harper in [3] such that

$$
H^{*}\left(K ; Z_{3}\right) \cong Z_{3}\left[x_{8}\right] /\left(x_{8}^{3}\right) \otimes \Lambda\left(x_{3}, x_{7}\right)
$$

where $x_{7}=\wp^{1} x_{3}$ and $x_{8}=\beta x_{7}$. Then, according to Harper [3], F_{4} is 3 -equivalent to $K \times B_{1}(11,15)$.

We consider the 3 -connective fiber space \tilde{F}_{4} over F_{4} by killing $\pi_{3}\left(F_{4}\right)$ so that $\pi_{i}\left(\tilde{F}_{4}\right) \cong \pi_{i}\left(F_{4}\right)$ for $i \geq$ 4. Then we have that \tilde{F}_{4} is 3 -equivalent to $\tilde{K} \times$ $B_{1}(11,15)$, where \tilde{K} is the 3 -connective fiber space over K and $H^{*}\left(\tilde{K} ; Z_{3}\right) \cong Z_{3}\left[y_{18}\right] \otimes \Lambda\left(y_{19}, y_{23}\right)$, where $y_{19}=\beta y_{18}$ and $y_{23}=\wp^{1} \beta y_{18}$. Now we approximate \tilde{K} by a finite cell complex $K^{\prime}=S^{18} \cup_{3 \iota_{18}} e^{19} \cup e^{23}$ such that $\pi_{i}(\tilde{K})$ is \mathcal{C}_{3}-isomorphic to $\pi_{i}\left(K^{\prime}\right)$ for $i \leq 34$.

Then we have the homotopy exact sequence

$$
\begin{aligned}
\cdots & \rightarrow \pi_{i}\left(S^{22}\right) \xrightarrow{f_{*}} \pi_{i}\left(S^{18} \cup_{3 l_{18}} e^{19}\right) \rightarrow \pi_{i}\left(K^{\prime}\right) \\
& \rightarrow \pi_{i-1}\left(S^{22}\right) \xrightarrow{f_{⿱}} \pi_{i-1}\left(S^{18} \cup_{3 l_{18}} e^{19}\right) \rightarrow \cdots
\end{aligned}
$$

for $i \leq 34$, where $f: S^{22} \rightarrow S^{18} \cup_{3 \iota_{18}} e^{19}$ is the attaching map for e^{23}. Thus we can obtain $\pi_{i}\left(F_{4}\right.$: 3) for $i \leq 34$. (Recall that $\pi_{i}\left(B_{1}(11,15)\right.$ is calculated in [9]).

Homotopy group of $\boldsymbol{E}_{\mathbf{6}}$. According to Harris [4], E_{6} is 3 equivalent to $F_{4} \times B_{2}(9,17)$. Thus $\pi_{i}\left(E_{6}: 3\right)$ can be read off from those of F_{4} and $B_{2}(9,17)$, which is calculated from the homotopy exact sequence associated with the bundle $B_{2}(9,17) / S^{9}=S^{17}$.

Homotopy group of $\boldsymbol{E}_{\mathbf{8}}$. The 3-connective fiber space \tilde{E}_{8} over E_{8} has the following $\bmod 3$ co-

[^0]: *) Department of Mathematical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621.
 **) Department of Mathematics, Okayama University, 3-11 Tsushima-Naka, Okayama 700-8530.

