The abc conjecture and the fundamental system of units of certain real bicyclic biquadratic fields

By Shin-ichi Katayama
Department of Mathematical Sciences, Tokushima University, 1-1 Minamijyosanjima-cho, Tokushima 770-8502
(Communicated by Shokichi Iyanaga, m.J.A., Dec. 13, 1999)

Let k_{1} be a real quadratic field and

$$
\eta_{1}=\left(M+\sqrt{M^{2} \pm 4}\right) / 2
$$

be a fixed unit of k_{1} with a positive integer M. Let $\bar{\eta}_{1}$ be the field conjugate of η_{1}.

Put

$$
g_{n}(M)=\eta_{1}^{n}+\bar{\eta}_{1}^{n}, \quad h_{n}(M)=\frac{\eta_{1}^{n}-\bar{\eta}_{1}^{n}}{\sqrt{M^{2} \pm 4}} .
$$

Then the sequences $\left\{g_{n}(M)\right\}_{n \in \mathbf{N}}$ and $\left\{h_{n}(M)\right\}_{n \in \mathbf{N}}$ are the non-degenerate binary recurrence sequences defined by

$$
\begin{aligned}
& g_{n+2}(M)=M g_{n+1}(M) \pm g_{n}(M) \\
& h_{n+2}(M)=M h_{n+1}(M) \pm h_{n}(M)
\end{aligned}
$$

with the initial terms $g_{0}(M)=2, g_{1}(M)=M$ and $h_{0}(M)=0, h_{1}(M)=1$. If there is no fear of confusion, we simply write $h_{n}(M)$ and $g_{n}(M)$ for h_{n} and g_{n}, respectively.

In our previous paper [1], we have investigated Hasse's unit indices Q_{K} of the real bicyclic biquadratic fields $K=\boldsymbol{Q}\left(\sqrt{M^{2} \pm 4}, \sqrt{h_{2 n+1}^{2}(M)-1}\right)$ and shown that $Q_{K}=1$ except for finitely many indices n. In this note, assuming the abc conjecture, we shall determine the fundamental system of units of almost all K explicitly. First of all, we shall quote the following:

The abc conjecture. For any $\varepsilon>0$, there exists a constant $K_{0}>0$ (depending on ε) such that if a, b, c are non-zero relatively prime integers with $a+b+c=0$, then

$$
\max \{|a|,|b|,|c|\} \leq K_{0} r^{1+\varepsilon}
$$

where $r=\operatorname{rad}(a b c)=\prod_{p \mid a b c} p \quad$ (p : prime integer).
Any positive integer m can be written in the form $m=s(m) q^{2}(m)$, where $s(m)$ is the square free part of m. The following proposition is a corollary of a more general result of P. Ribenboim and G. Walsh [5, Theorem 2]:

Proposition 1 (Assuming the abc conjecture).

For any $\varepsilon>0$,

$$
q\left(h_{n}\right) \leq h_{n}^{\varepsilon} \quad \text { and } \quad q\left(g_{n}\right) \leq g_{n}^{\varepsilon}
$$

except for finitely many indices n.
Since $h_{n}=s\left(h_{n}\right) q^{2}\left(h_{n}\right)$, we have $q\left(h_{n}\right) \leq h_{n}^{\varepsilon}$ if and only if $\left(q\left(h_{n}\right)\right)^{1 / \varepsilon-2} \leq s\left(h_{n}\right)$. Hence the abc conjecture and the fact $1 / \varepsilon-2 \rightarrow \infty$ as $\varepsilon \rightarrow+0$ imply that for any $m>0$,

$$
\begin{equation*}
q^{m}\left(h_{n}\right) \leq s\left(h_{n}\right) \tag{1}
\end{equation*}
$$

except for finitely many indices n. From the case $m=2$ of the above (1), we have $h_{n}=s\left(h_{n}\right) q^{2}\left(h_{n}\right)$ $\leq s^{2}\left(h_{n}\right)$. The fact $h_{n} \rightarrow \infty$ as $n \rightarrow \infty$ implies the following proposition.

Proposition 2 (Assuming the abc conjecture). For any constant $C>0$,

$$
C \leq s\left(h_{n}\right)
$$

except for finitely many indices n.
It is easy to show that for any positive integers x and y,

$$
\begin{aligned}
& s(x y)=s(x) s(y) /(s(x), s(y))^{2} \geq s(x) s(y) /(x, y)^{2} \\
& q(x y)=q(x) q(y)(s(x), s(y)) \leq q(x) q(y)(x, y)
\end{aligned}
$$

In Proposition 1 of [1], we have shown $h_{2 n+1}^{2}$ $-1=h_{2 n} h_{2 n+2}$ with $\left(h_{2 n}, h_{2 n+2}\right)=M$. Hence, assuming the abc conjecture, we have that, for any $m>0$,

$$
s\left(h_{2 n}\right) s\left(h_{2 n+2}\right) \geq M^{2 m+4}
$$

except for finitely many indices n. The inequality (1) implies $s\left(h_{2 n}\right) \geq q^{2 m}\left(h_{2 n}\right)$ and $s\left(h_{2 n+2}\right) \geq$ $q^{2 m}\left(h_{2 n+2}\right)$ except for finitely many indices n. Hence we have

$$
\begin{aligned}
& s^{2}\left(h_{2 n+1}^{2}-1\right)=s^{2}\left(h_{2 n} h_{2 n+2}\right) \\
& \geq s^{2}\left(h_{2 n}\right) s^{2}\left(h_{2 n+2}\right) / M^{4} \\
& \geq q^{2 m}\left(h_{2 n}\right) q^{2 m}\left(h_{2 n+2}\right) s\left(h_{2 n}\right) s\left(h_{2 n+2}\right) / M^{4} \\
& =\left(M q\left(h_{2 n}\right) q\left(h_{2 n+2}\right)\right)^{2 m} s\left(h_{2 n}\right) s\left(h_{2 n+2}\right) / M^{2 m+4} \\
& \geq q^{2 m}\left(h_{2 n} h_{2 n+2}\right)=q^{2 m}\left(h_{2 n+1}^{2}-1\right) .
\end{aligned}
$$

