The abc conjecture and the fundamental system of units of certain real bicyclic biquadratic fields

By Shin-ichi KATAYAMA

Department of Mathematical Sciences, Tokushima University, 1-1 Minamijyosanjima-cho, Tokushima 770-8502 (Communicated by Shokichi IYANAGA, M.J.A., Dec. 13, 1999)

Let k_1 be a real quadratic field and

$$\eta_1 = (M + \sqrt{M^2 \pm 4})/2$$

be a fixed unit of k_1 with a positive integer M. Let $\bar{\eta}_1$ be the field conjugate of η_1 .

Put

$$g_n(M) = \eta_1^n + \bar{\eta}_1^n, \qquad h_n(M) = \frac{\eta_1^n - \bar{\eta}_1^n}{\sqrt{M^2 \pm 4}}.$$

Then the sequences $\{g_n(M)\}_{n \in \mathbb{N}}$ and $\{h_n(M)\}_{n \in \mathbb{N}}$ are the non-degenerate binary recurrence sequences defined by

$$g_{n+2}(M) = Mg_{n+1}(M) \pm g_n(M),$$

 $h_{n+2}(M) = Mh_{n+1}(M) \pm h_n(M),$

with the initial terms $g_0(M) = 2$, $g_1(M) = M$ and $h_0(M) = 0$, $h_1(M) = 1$. If there is no fear of confusion, we simply write $h_n(M)$ and $g_n(M)$ for h_n and g_n , respectively.

In our previous paper [1], we have investigated Hasse's unit indices Q_K of the real bicyclic biquadratic fields $K = \mathbf{Q}(\sqrt{M^2 \pm 4}, \sqrt{h_{2n+1}^2(M) - 1})$ and shown that $Q_K = 1$ except for finitely many indices n. In this note, assuming the *abc conjecture*, we shall determine the fundamental system of units of almost all K explicitly. First of all, we shall quote the following:

The abc conjecture. For any $\varepsilon > 0$, there exists a constant $K_0 > 0$ (depending on ε) such that if a, b, c are non-zero relatively prime integers with a + b + c = 0, then

$$\max\{|a|, |b|, |c|\} \le K_0 r^{1+\varepsilon},$$

where $r = rad(abc) = \prod_{p|abc} p$ (p: prime integer).

Any positive integer m can be written in the form $m = s(m)q^2(m)$, where s(m) is the square free part of m. The following proposition is a corollary of a more general result of P. Ribenboim and G. Walsh [5, Theorem 2]:

Proposition 1 (Assuming the abc conjecture).

For any $\varepsilon > 0$,

$$q(h_n) \leq h_n^{\varepsilon}$$
 and $q(g_n) \leq g_n^{\varepsilon}$

except for finitely many indices n.

Since $h_n = s(h_n)q^2(h_n)$, we have $q(h_n) \leq h_n^{\varepsilon}$ if and only if $(q(h_n))^{1/\varepsilon-2} \leq s(h_n)$. Hence the abc conjecture and the fact $1/\varepsilon - 2 \to \infty$ as $\varepsilon \to +0$ imply that for any m > 0,

(1)
$$q^m(h_n) \le s(h_n)$$

except for finitely many indices n. From the case m = 2 of the above (1), we have $h_n = s(h_n)q^2(h_n) \le s^2(h_n)$. The fact $h_n \to \infty$ as $n \to \infty$ implies the following proposition.

Proposition 2 (Assuming the abc conjecture). For any constant C > 0,

$$C \le s(h_n)$$

except for finitely many indices n.

It is easy to show that for any positive integers x and y,

$$\begin{split} s(xy) &= s(x)s(y)/(s(x),s(y))^2 \geq s(x)s(y)/(x,y)^2, \\ q(xy) &= q(x)q(y)(s(x),s(y)) \leq q(x)q(y)(x,y). \end{split}$$

In Proposition 1 of [1], we have shown h_{2n+1}^2 $-1 = h_{2n}h_{2n+2}$ with $(h_{2n}, h_{2n+2}) = M$. Hence, assuming the abc conjecture, we have that, for any m > 0,

$$s(h_{2n})s(h_{2n+2}) \ge M^{2m+4}$$

except for finitely many indices n. The inequality (1) implies $s(h_{2n}) \ge q^{2m}(h_{2n})$ and $s(h_{2n+2}) \ge q^{2m}(h_{2n+2})$ except for finitely many indices n. Hence we have

$$s^{2}(h_{2n+1}^{2}-1) = s^{2}(h_{2n}h_{2n+2})$$

$$\geq s^{2}(h_{2n})s^{2}(h_{2n+2})/M^{4}$$

$$\geq q^{2m}(h_{2n})q^{2m}(h_{2n+2})s(h_{2n})s(h_{2n+2})/M^{4}$$

$$= (Mq(h_{2n})q(h_{2n+2}))^{2m}s(h_{2n})s(h_{2n+2})/M^{2m+4}$$

$$\geq q^{2m}(h_{2n}h_{2n+2}) = q^{2m}(h_{2n+1}^{2}-1).$$