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A note on the Rankin-Selberg method
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The purpose of this note is to give an explicit
relation between certain Dirichlet series and spinor
zeta functions attached to Siegel cusp forms of genus
2; a part of results in [7] is generalized to the case
of any level. Thereby we point out that the method
of [7] to study spinor zeta functions is applicable to
higher levels.

1. Notations. We use standard notations,
found in [2]. We let Γ2 := Sp2(Z) be integral sym-
plectic 4×4-matrices and Γ1 be the elliptic full mod-
ular group. We set

Γg(N) :=
{(

A B

C D

)
∈ Γg| C ≡ O(mod N)

}
.

where A, B, C, D are g× g-matrices. We let ΓJ
1 (N)

be the semi direct product of Γ1(N) and Z2, which
is called the Jacobi group of level N .

Hg denotes the Siegel upper half space of genus
g consisting of complex g×g-matrices with positive
definite imaginary part. We often write

Z = X + iY =
(
τ z

z τ ′

)
∈ H2.

Let k be an integer > 2 and χ be a Dirichlet
character modulo N . We write Sk(N,χ) for the
space of holomorphic cusp forms on H2 of weight
k and character χ with respect to Γ2(N), and
Jcusp

k,l (N,χ) for the space of holomorphic Jacobi cusp
forms on H1×C of weight k, character χ and index l
with respect to ΓJ

1 (N). The Petersson inner product
on these spaces are normalized by

〈F,G〉N :=
∫

Γ2(N)\H2

F (Z)Ḡ(Z) |Y |k−3 dX dY

(F,G∈Sk(N,χ), Z = X + iY ∈ H2),

〈φ, ψ〉N :=
∫

ΓJ
1 (N)\H1×C

φ(τ, z) ψ̄(τ, z)

× exp
(
−4πly2

v

)
vk−3du dv dx dy
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(φ, ψ ∈Jcusp
k,l (N,χ),

τ = u+ iv ∈ H1, z = x+ iy ∈C).

We write simply e(∗) for exp(2πi∗).
2. Statement of Result.
Definition. Let F , G ∈ Sk(N,χ) be Siegel

cusp forms of level N and let M be a natural number
which divides N . For each γ ∈ Sp2(Z), we write

F |kγ(Z) =
∑
n≥1

φn,γ(τ, z)e
(
nτ ′

N

)
,

G|kγ(Z) =
∑
n≥1

ψn,γ(τ, z)e
(
nτ ′

N

)
.

Then we define the Rankin convolution series
DF,G;M (s) as ζ(2s− 2k + 4) times∑

n≥1

{∫
F

∑
γ∈Γ2(N)\Γ2(M)

φn,γ (τ, z) ψ̄n,γ(τ, z)(1)

× exp
(
−4πny2

vN

)
vk−3 du dv dx dy

}
n−s,

where F is a fundamental domain ΓJ
1 (M)\H1 × C,

and define its gamma factor by

D∗F,G;M (s) := (2π)−2s Γ(s) Γ(s− k + 2)DF,G;M (s).

In a special case of M = N , this is an obvious
generalization of the symmetric square series defined
by Rankin in the case of genus 1 ([10]):

DF,G;N (s) =
1
Ns

ζ(2s− 2k + 4)
∑
n≥1

〈φn, ψn〉N
ns

,

where φn (resp. ψn) denotes the n-th Fourier-Jacobi
coefficient of F (resp. G).

On the other hand, if F (Z) ∈ Sk(N,χ) is a
Hecke eigenform with T (n)F = λF (n)F for all the
Hecke operators T (n) with (n,N) = 1, one can as-
sociate with F the spinor zeta function which is an
Euler product of the form

ZF (s) :=
∏

p:prime
(p,N)=1

QF,p(p−s)−1,(2)


