Invariance of strong paracompactness under closed-and-open maps

By David BUHAGIAR*)

Department of Mathematics, Okayama University, Okayama 700-8530 (Communicated by Kiyosi ITÔ, M. J. A., June 23, 1998)

Abstract: In this paper we strengthen a result of Ponomarev [6] on the invariance of Strong Paracompactness under open perfect maps. Namely, we prove that Strong Paracompactness is invariant under closed-and-open maps. This result follows after we give four new characterizations of strong paracompactness.

Key words: Strong paracompactness; closed-and-open maps.

§1 Preliminaries. In this paper by a space we mean a Hausdorff topological space and by a map, a continuous map of spaces.

Strongly paracompact spaces were defined by Dowker [2]. Unlike most covering properties, strongly paracompact spaces are not invariant under perfect maps [1]. This can be seen from the following result by Ponomarev [5].

Theorem 1.1. Every paracompact space is the image of a strongly paracompact space under a perfect map. \Box

Ponomarev [6] has shown that strong paracompactness is an invariant of open perfect maps. Indeed, Ponomarev [7] strengthened this result by showing that strong paracompactness is preserved under Λ -maps in the realm of regular spaces, where a map $f: X \rightarrow Y$ is called an Λ -map if it satisfies the following two conditions : (a) the image of every clopen (closed-and-open) set is a clopen set and (b) for every point $y \in Y$ and every cover \mathcal{U}_{u} of the set $f^{-1}y$ by clopen sets admits a finite subcover. The aim of this paper is to show that in fact in the realm of regular spaces, strong paracompactness is preserved under CO-maps, that is maps satisfying condition (a) above. As a consequence we get that strong paracompactness is an invariant of closed-and-open maps (i.e. maps which are both closed and open).

Let $\mathscr{P} = \{P_{\alpha} : \alpha \in \mathscr{A}\}$ be a collection of subsets of a set X. By a *chain* from P_{α} to $P_{\alpha'}$ we mean a finite sequence $P_{\alpha(1)}, P_{\alpha(2)}, \ldots, P_{\alpha(k)}$ of

elements of \mathscr{P} such that $\alpha(1) = \alpha$, $\alpha(k) = \alpha'$ and $P_{\alpha(i)} \cap P_{\alpha(i+1)} \neq \emptyset$ for $i = 1, \ldots, k-1$. The collection \mathscr{P} is said to be *connected* if for every pair P_{α} , $P_{\alpha'}$ of elements of \mathscr{P} there exists a chain from P_{α} to $P_{\alpha'}$. For every collection \mathscr{P} the *components* of \mathscr{P} are defined as maximal connected subcollections of \mathscr{P} , that is connected subcollections of \mathscr{P} which are not proper subsets of any connected subcollection of \mathscr{P} .

Remember that a collection \mathscr{P} of subsets of a set X is said to be star-finite (star-countable) if for every $P \in \mathscr{P}$ the collection $\{Q \in \mathscr{P} : Q \cap P \neq \emptyset\}$ is finite (countable). A space X is called *strongly paracompact* (otherwise called *hypocompact*) if every open cover of X has a star-finite open refinement. Thus every strongly paracompact space is paracompact but the converse is not true. In fact there exist metric spaces which are not strongly paracompact [1].

The following lemma will be used below (see for example [1] or [3]).

Lemma 1.2.

- (1) Every collection \mathcal{P} of subsets of a set X decomposes into the union of its components.
- (2) If \mathcal{P}_1 and \mathcal{P}_2 are distinct components of \mathcal{P} , then $(\cup \mathcal{P}_1) \cap (\cup \mathcal{P}_2) = \emptyset$.
- (3) If \mathcal{P} is star-countable, then each component is a countable subcollection of \mathcal{P} .

For a collection \mathscr{P} of subsets of a set X and an infinite ordinal number τ let $\mathscr{P}^{\tau} = \{ \bigcup \mathscr{Q} : \mathscr{Q} \subset \mathscr{P}, |\mathscr{Q}| < \tau \}$. The collection $\mathscr{P}^{\omega} = \mathscr{P}^{\omega_0}$ is usually denoted by \mathscr{P}^{F} . In this paper we will be interested in the particular case of $\tau = \omega_1$, the first uncountable ordinal. Thus \mathscr{P}^{ω_1} is the collection of all unions of at most countable subcollections from \mathscr{P} .

¹⁹⁹¹ Mathematics Subject Classification. Primary 54C10, 54D20,

^{*)} Department of Mathematics, Shimane University, Matsue 690-8504.