A note on Terai's conjecture concerning Pythagorean numbers*)

By Xigeng CHEN**) and Maohua LE***)

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1998)

Abstract: Let (a, b, c) be a primitive Pythagorean triple with $2 \mid a$. In this note we prove that if $b \not\equiv 1 \pmod{16}$, $b^2 + 1 = 2c$, b and c are both odd primes, then the equation $x^2 + b^y = c^z$ has only the positive integer solutions (x, y, z) = (a, 2, 2).

1. Introduction. Let Z, N, Q be the sets of integers, positive integers and rational numbers respectively. Let (a, b, c) be a primitive Pythagorean triple such that

(1)
$$a^2 + b^2 = c^2$$
, a , b , $c \in \mathbb{N}$, $\gcd(a, b, c) = 1, 2 \mid a$.

Then we have

(2) $a = 2st, b = s^2 - t^2, c = s^2 + t^2$ where s, t are positive integers satisfying s > t, gcd(s, t) = 1 and 2 | st. In 1993, Terai [4] conjectured that the equation

 $x^{2} + b^{y} = c^{z}, x, y, z \in N,$ has only the solution (x, y, z) = (a, 2, 2). This conjecture is not solved as yet. In [4], Terai proved that if $b \equiv 1 \pmod{4}$, $b^2 + 1 = 2c$, b, c are odd primes, c splits in the imaginary quadratic field $K = Q(\sqrt{-b})$ and the order d of a prime ideal divisor of [c] in K satisfies either d= 1 or $2 \mid d$, then (3) has only the solution (x, y, z = (a, 2, 2). In this note we prove the following general result.

Theorem. If $b \not\equiv 1 \pmod{16}$, $b^2 + 1 = 2c$, b, c are both odd primes, then (3) has only the solution (x, y, z) = (a, 2, 2).

2. Preliminaries. Lemma 1 ([2] and [3]). The equation

 $X^{2} + 1 = 2Y^{n}, X, Y, n \in \mathbb{N}, Y > 1, n > 2,$ has only the solution (X, Y, n) = (239, 13, 4).

Lemma 2 ([1, Lemma 2]). Let k be a positive integer. All solutions (X, Y, Z) of the equation

$$X^{2} + Y^{2} = k^{2}, X, Y, Z \in \mathbf{Z},$$

 $gcd(X, Y) = 1, Z > 0$

are given by

$$Z = n, X + Y\sqrt{-1} = \lambda_1(X_1 + \lambda_2 Y_1 \sqrt{-1})^n$$

or $\lambda_1(Y_1 + \lambda_2 X_1 \sqrt{-1})^n$,

$$n \in \mathbb{N}, \lambda_1, \lambda_2 \in \{-1, 1\},$$

 $n \in N \text{, } \lambda_{\text{1}} \text{, } \lambda_{\text{2}} \in \{-1, 1\} \text{,}$ where $X_{\text{1}}, Y_{\text{1}}$ run through all positive integers satisfying

$$X_1^2 + Y_1^2 = k$$
, $gcd(X_1, Y_1) = 1$.

 $X_1^2 + Y_1^2 = k$, $gcd(X_1, Y_1) = 1$. 3. **Proof of theorem.** Since $b^2 + 1 = 2c$ and $2 \nmid b$, we have

$$\left(\frac{b+1}{2}\right)^2 + \left(\frac{b-1}{2}\right)^2 = c.$$

Notice that c is an odd prime. We see from (4)

(5)
$$(X_1, Y_1) = \left(\frac{b+1}{2}, \frac{b-1}{2}\right), \left(\frac{b-1}{2}, \frac{b+1}{2}\right)$$

are all positive integers X_1 , Y_1 satisfying (6) $X_1^2 + Y_1^2 = c$, $gcd(X_1, Y_1) = 1$. (6)Hence, by (2) and (4), we get s = (b + 1)/2, t =(b-1)/2, s=t+1,

(7) $a = 2t(t+1), b = 2t+1, c = 2t^2+2t+1.$

Let (x, y, z) be a solution of (3). Since b is an odd prime, if $2 \mid z$, then from (3) we get $c^{z/2} + x = b^y$, and $c^{z/2} - x = 1$. It implies that (8) $b^y + 1 = 2c^{z/2}$.

$$(8) b'' + 1 = 2c^{2/2}.$$

Since b+1=2t+2 and $c \equiv 1 \pmod{2t}$ 2) by (7), we find from (8) that $2 \mid y$. Since $b^2 +$ 1 = 2c, if z/2 = 1, then from (1) and (8) we get the solution (x, y, z) = (a, 2, 2). If z/2 = 2, then we have $b^y + 1 = 2c^2 = 2((b^2 + 1)/2)^2$. It follows that $2 \equiv 1 \pmod{b}$, a contradiction. If z/2 > 2, by Lemma 1, then we get (b, y, c, z)= (239, 2, 13, 8). It is impossible, by (3). Thus, (3) has only the solution (x, y, z) =(a, 2, 2) with 2 | z.

If
$$2 \mid y$$
 and $2 \nmid z$, then the equation $X^2 + Y^2 = c^Z$, X , Y , $Z \in \mathbb{Z}$,

¹⁹⁹¹ Mathematics Subject Classification. 11 D 61.

^{*)} Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.

^{**} Department of Mathematics, Maoming Education College. P. R. China.

^{***)} Department Mathematics, Zhanjiang of Teachers College, P. R. China.