A note on Shafarevich-Tate sets for finite groups

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., May 12, 1998)

1. A problem. Let K/k be a finite Galois extension of number fields and \mathfrak{g} be the Galois group: $\mathfrak{g} = \operatorname{Gal}(K/k)$. For a prime \mathfrak{P} in K, we denote by $\mathfrak{g}_{\mathfrak{P}}$ the decomposition group of \mathfrak{P} for $K/k: \mathfrak{g}_{\mathfrak{P}} = \{s \in \mathfrak{g}; \mathfrak{P}^s = \mathfrak{P}\}^1\}$. Let G be a left \mathfrak{g} -group. A cocycle is a map $f: \mathfrak{g} \to G$ which satisfies

 $(1.1) f(st) = f(s)f(t)^s, s, t \in \mathfrak{g}.$

We denote by $Z(\mathfrak{g}, G)$ the set of all cocycles. Two cocycles f, f' are equivalent, written $f \sim f'$, if there exists $a \in G$ such that

(1.2)
$$f'(s) = a^{-1}f(s)a^{s}.$$

We shall denote by [f] the class of a cocycle f. The quotient

$$(1.3) H(\mathfrak{g}, G) = Z(\mathfrak{g}, G) / \sim$$

is the cohomology set. $Z(\mathfrak{g}, G)$ contains a distinguished map 1 given by $1(\mathfrak{s}) = 1$ for all $\mathfrak{s} \in \mathfrak{g}$. Then a map $f \sim 1$ is said to be a coboundary. Therefore, we have

(1.4) f is a coboundary $\Leftrightarrow f(s) = a^{-1}a^s$ for some $a \in G$.

Since a decomposition group $\mathfrak{g}_{_{\mathfrak{F}}}$ is a subgroup of $\mathfrak{g},$ we have the restriction map

(1.5) $r_y: H(g, G) \to H(g_y, G)$ induced by $f \mapsto f \mid g_y, f \in Z(g, G)$. This map sends the distinguished class in H(g, G) to the one in $H(g_y, G)$. Hence Ker r_y makes sense. One finds easily that Ker r_y depends only on a prime \mathfrak{p} in k lying below \mathfrak{P} because if $\mathfrak{P}' \mid \mathfrak{P}$ then $\mathfrak{P}' = \mathfrak{P}'$ for some $t \in \mathfrak{g}$ and $g_y' = tg_y t^{-1}$ which implies that $\ker r_y = \ker r_y'^{(3)}$. Therefore, the Shafarevich-Tate set:

- (1.6) III $(K/k, G) = \bigcap_{\mathfrak{p}} \operatorname{Ker} r_{\mathfrak{p}}$ makes sense.
- (1.7) **Problem.** Given a Galois extension K/k and a g-group G, g = Gal(K/k), study the set $\coprod (K/k, G)$.
- (1.8) Remark. (i) We shall call an extension K/k trivial if $\mathfrak{g} = \mathfrak{g}_{\mathfrak{B}}$ for some \mathfrak{P} in K. When that is so, we have $\coprod (K/k, G) = 1$, i.e. the Hasse principle holds for (K/k, G) for any ggroup G. For example, every cyclic extension K/kis trivial since any generator s of g can be a Frobenius automorphism for some \mathfrak{P} , s = (K/k), \$\mathbb{B}\$), by Chebotarev theorem. As an example of K/k which is trivial but not cyclic, we think of the case $k = \mathbf{Q}$, $K = \mathbf{Q}(\zeta_t)$, $\zeta_t = \exp(2\pi i/2^t)$, $t \geq 3$; here we have $g = g_{x}$ for $\mathfrak{P} \mid 2$, because 2 is totally ramified in K. In 2 we shall study the relative cyclotomic field $K = k (\zeta_t)$ with k = $Q(\sqrt{\ell})$, ℓ an odd prime, and show, among others, that $\# \coprod (K/k, G) = 2$ if t = 3 $\ell \equiv 7 \mod 8, \ G = \langle \zeta, \rangle.$
- (ii) As another trivial case, let us mention that $\coprod (K/k, G) = 1$ for any extension K/k and G, if $\mathfrak g$ acts trivially on G. This follows again from Chebotarev theorem, because $H(\mathfrak g, G) = \operatorname{Hom}(\mathfrak g, G)$, $H(\mathfrak g_{\mathfrak p}, G) = \operatorname{Hom}(\mathfrak g_{\mathfrak p}, G)$ and $\mathfrak g = \bigcup t\mathfrak g_{\mathfrak p} t^{-1}$, $t \in \mathfrak g$.
- 2. An example. As announced in (1.8), (i), we shall consider the Galois extension $K = k(\zeta_t)$, $\zeta_t = \exp(2\pi i/2^t)$, $t \geq 3$, $k = Q(\sqrt{\ell})$, ℓ an odd prime. Let \mathfrak{P} be as before a prime in K and \mathfrak{P} be the one in k such that $\mathfrak{P} \mid \mathfrak{P}$. Since K/k is abelian, we can use $\mathfrak{g}_{\mathfrak{P}}$ instead of $\mathfrak{g}_{\mathfrak{P}}$ for the decomposition subgroup at \mathfrak{P} of $\mathfrak{g} = \operatorname{Gal}(K/k)$. Furthermore, we shall set $F = Q(\zeta_t)$. Let P, p be primes in F, Q, respectively, both lying under the prime \mathfrak{P} in K. We have [k:Q] = [K:F] = 2, $[F:Q] = [K:Q] = 2^{t-1}$. Note that $\mathfrak{g} = \operatorname{Gal}(K/k) \cong \operatorname{Gal}(F/Q) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{t-2}\mathbb{Z}$ which is not cyclic. Now if $p \neq 2$, then $e(P \mid p) = 1$ and so $e(\mathfrak{P} \mid p) = 1$; hence $\mathfrak{g}_{\mathfrak{P}} = \langle (K/k, \mathfrak{P}) \rangle \neq \mathfrak{g}^{4}$. So we have the following lemma:

¹⁾ By a prime we include one at infinity as usual; in this work, however, such a prime does not play any significant role.

²⁾ If $s \in g$ and $a \in G$, then the action of s on a will be denoted by sa or a^s , interchangeably. Note that $(a')^s = a^{(st)}$ because s(ta) = (st)a.

³⁾ For $s \in \mathfrak{g}_{\mathfrak{P}}$, let $s' = tst^{-1} \in \mathfrak{g}_{\mathfrak{P}}'$. If $f(s) = a^{-1}a^s$, $f \in \text{Ker } r_{\mathfrak{P}}$, then, $f(s') = a'^{-1}a'^{s'}$ with $a' = a'f(t)^{-1}$.

⁴⁾ We use standard notation like $e(\mathfrak{P} \mid \mathfrak{p})$, $f(\mathfrak{P} \mid \mathfrak{p})$ in Hilbert theory of Galois extensions.