A resolvent estimate and a smoothing property of inhomogeneous Schrödinger equations

By Mitsuru Sugimoto and Keiichi Tsujimoto
Department of Mathematics, Graduate school of Science, Osaka University
(Communicated by Kiyosi ITÔ, M. J. A., May 12, 1998)

1. Results. Throughout this paper, we always assume $n \geq 2$. Let $p(\xi)>0$ be of the class $C^{\infty}\left(\boldsymbol{R}^{n} \backslash 0\right)$ and positively homogeneous of degree 1 , and $P=p\left(D_{x}\right)=\mathscr{F}_{\xi}^{-1} p(\xi) \mathscr{F}_{x}$ the cor. responding Fourier multiplier. Suppose that $\Sigma=$ $\{\xi ; p(\xi)=1\}$ has non-vanishing Gaussian curvature. The objective of this brief article is to show the following smoothing effect of inhomogeneous generalized Schrödinger equations:

Theorem 1.1. Suppose $1-n / 2<s<1 / 2$, $1-n / 2<\alpha<1 / 2$ and let $|x|^{1-s} f(t, x) \in L^{2}$ $\left(\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}\right)$. Then there exists a unique solution $u(t, x)$ to

$$
\left\{\begin{array}{r}
\left(\partial_{t}+i P^{2}\right) u=f \tag{1.1}\\
\left.u\right|_{t=0}=0
\end{array}\right.
$$

which satisfies $|x|^{\alpha-1}\left|D_{x}\right|^{s+\alpha} u(t, x) \in L^{2}\left(\boldsymbol{R}_{t} \times\right.$ \boldsymbol{R}_{x}^{n}.

Theorem 1.1 says that the solution gains the regularity of order " s " in connection with the decay order of the inhomogeneous term f, plus an extra gain of order " $\alpha<1 / 2$ ", in the sense of space-time norm. This is an improvement of the result in Hoshiro [3] which showed Theorem 1.1 with $P=\left|D_{x}\right|$ and $0<\alpha=s<1 / 2$.

Since Hoshiro's method deeply depends on the properties of special functions, it is not suitable for handling the general operator P. To remove this obstacle is also in our focus. The most essential part of the proof is the following resolvent estimate :

Theorem 1.2. Suppose $1-n / 2<a<1 / 2$ and $1-n / 2<b<1 / 2$. Then we have

$$
\begin{align*}
& \sup _{\operatorname{lm} \lambda>0}\left\||x|^{a-1}|D|^{a+b}\left(P^{2}-\lambda^{2}\right)^{-1} v(x)\right\|_{L^{2}\left(\boldsymbol{R}^{n}\right)} \tag{1.2}\\
& \leq C\left\||x|^{1-b} v(x)\right\|_{L^{2}\left(\boldsymbol{R}^{n}\right)} .
\end{align*}
$$

Theorem 1.2 is partly proved in the master's

The first author is supported by the Grant-In-Aid of the Inamori Foundation.
thesis of the second author [7]. The main tools for the proof of it are the weighted L^{2}-boundedness of Fourier multipliers, the limiting absorption principle, and an estimate for the kernel of the resolvent, which enable us to treat general operators P. We shall explain the details in Section 2.

Finally, the authors express gratitude to Professor Toshihiko Hoshiro for his kindness to provide us with his preprints, together with valuable comments.
2. Proof. To begin with, we shall prove Theorem 1.2. The argument here is based on [7]. Hereafter, we denote the norm $\|\cdot\|_{L^{2}\left(\boldsymbol{R}^{n}\right)}$ by $\|\cdot\|$. We remark

$$
\begin{aligned}
& 1 / 2<1-a<n / 2, \quad 1 / 2<1-b<n / 2 \\
& 0<a+b-2+n<n
\end{aligned}
$$

which will be used later frequently without any notice. Furthermore, we may assume

$$
(3-n) / 2 \leq a+b
$$

The general case can be reduced to this special one because of the following :

Proposition 2.1 ([5, Theorem B*]). Suppose k $<n / 2, l<n / 2,0<m<n$, and $k+l+m=$ n. Then we have

$$
\begin{aligned}
\||x|^{-l}|D|^{m-n} v & \|=\||x|^{-l} \int \frac{v(y)}{|x-y|^{m}} d y \| \\
& \leq C\left\||x|^{k} v\right\|
\end{aligned}
$$

In fact, if $a+b<(3-n) / 2$, we have $(3-n) / 2 \leq(a+\delta)+b$ and $1-n / 2<(a+$ $\delta)<1 / 2$, where $\delta=(3-n) / 2-(a+b)$. We remark $0<\delta<(n-1) / 2$. Then, by Proposition 2.1 and the estimate (1.2) with a replaced by $a+\delta$, we have

$$
\begin{aligned}
& \sup _{\operatorname{Im} \lambda>0}\left\||x|^{a-1}|D|^{a+b}\left(P^{2}-\lambda^{2}\right)^{-1} \cup\right\| \\
& \leq C \sup _{\operatorname{Im}>0}\left\||x|^{(a+\delta)-1}|D|^{(a+\delta)+b}\left(P^{2}-\lambda^{2}\right)^{-1} \cup\right\| \\
& \leq C\left\||x|^{1-b} \cup\right\|,
\end{aligned}
$$

