A Yang-Mills-Higgs gradient flow on R^3 blowing up at infinity

By Hideo KOZONO,*) Yoshiaki MAEDA, **) and Hisashi NAITO*) (Communicated by Kiyosi ITÔ, M. J. A., May 12, 1998)

1. Yang-Mills-Higgs functional. We prove long time existence of the Yang-Mills-Higgs gradient flow on Euclidean 3-space \mathbf{R}^3 , with a geometric characterization at the singular points. Since a solution of the Yang-Mills-Higgs gradient flow constructed in this paper has geometrically reasonable properties at the ideal boundary of \mathbf{R}^3 , we are motivated to propose our definition of a global solution for the gradient flow.

Let P be the trivial bundle $\mathbf{R}^3 \times SU$ (2) over R^3 and let \tilde{C} be the set of pairs of connections A on the principal bundle P and Higgs field Φ on \mathbf{R}^3 ; an $\mathfrak{gu}(2)$ -valued map on \mathbf{R}^3 , where \mathfrak{gu} (2) is the Lie algebra of SU (2). The Yang-Mills-Higgs functional is a functional on C defined by the following: for $(A, \Phi) \in \tilde{C}$,

(1)
$$E(A, \Phi) = \int_{P^3} (|F_A|^2 + |d_A \Phi|^2) dV$$

where d_A is the covariant exterior differentiation on the bundle P and $F_{\scriptscriptstyle A}$ denotes the curvature 2-form of A. Critical points of the functional (1) are called Yang-Mills-Higgs configurations.

2. Yang-Mills-Higgs gradient flow. We define the following compactified configuration space (cf. Groissor [2]):

$$C = \{ (A, \Phi) : E(A, \Phi) < \infty, \\ |\Phi(x)| \to 1 \text{ as } |x| \to \infty \}.$$

The configuration space C has a geometric invariant, $N(A, \Phi)$, defined by

(2)
$$N(A, \Phi) = \frac{1}{4\pi} \int_{P^3} F_A \wedge d_A \Phi.$$

N (A, Φ) is called the monopole number (or magnetic charge) of (A, Φ) . Groissor [2] showed that if $(A, \Phi) \in C$, then $N(A, \Phi)$ is an integer and the functional $N: C \rightarrow Z$ gives a path component decomposition on C. Restricting Φ to a sufficiently large 2-shpere S^2 in \mathbf{R}^3 determines a homotopy class of maps on S^2 . Let S_{∞} be the ideal boundary of R^3 . We can identify S_{∞} with

the unit 2-sphere $S^2(1)$ canonically: given Φ , we define a map $\Phi: S_{\infty} \to S^2$ by

(3)
$$\hat{\Phi}(\omega) = \lim_{r \to \infty} \frac{\Phi(r, \omega)}{|\Phi(r, \omega)|},$$

(3) $\hat{\Phi}(\omega) = \lim_{r \to \infty} \frac{\Phi(r, \omega)}{|\Phi(r, \omega)|},$ where $\Phi(r, \omega) = \Phi(x)$, r = |x|, $\omega = \frac{x}{|x|}$. Then,

we have $N(A, \Phi) = -\deg(\hat{\Phi})$. Furthermore, $2N(A, \Phi)$ gives the first Chern number of some bundle over S^2 . Thus, in constructing a solution of (4), it is reasonable to take its behavior at the ideal bundary S_{∞} into account.

We consider the following heat flow associated with the Yang-Mills-Higgs functional (1):

(4)
$$\begin{cases} \partial_t A = -d_A^* F_A - [\Phi, d_A \Phi], \\ \partial_t \Phi = \Delta_A \Phi, \end{cases}$$

with the initial condition $(A(0), \Phi(0)) = (A_0, \Phi(0))$ Φ_0).

We call a curve $(A(t), \Phi(t))$ in the configuration space C a smooth solution of (4) if $(A(t), \Phi(t))$ satisfies (4) in the classical sense. To fix the geometrical meaning for solutions of (4), we introduce the following notion:

Definition **1.** A smooth solution $(A(t), \Phi(t))$ of (4) is called *extendable* on (0, T] if the following conditions are satisfied:

- (i) For each $t \in (0, T]$, there exists a gauge transformation g(t) such that $g^*(t)A(t)$ extends to a smooth connection over S_{∞} $\cong S^2(1)$.
- (ii) $N(A(t), \Phi(t))$ of (4) is independent of $t \in (0, T].$

Let ε be a positive constant. For $\omega_0 \in S^2(1)$, let $B_{ au}\left(\omega_{0}
ight)$ be the geodesic ball centered at ω_{0} with the radius τ .

Definition 2. A smooth solution (A(t), $\Phi(t)$) of (4) of has the ε -property if

(5)
$$\liminf_{r\to\infty} \int_{B_r(\omega_0)} r^2(|F_A(t, r, \omega)|)$$

$$+ |d_A \Phi(t, r, \omega)|) d\omega \leq \varepsilon$$

for sufficiently small τ , for all $t \in (0, T]$ and for all $\omega_0 \in S^2$.

This definition gives a criterion for obtaining an extendable solution, and is one of the fundamental observations for constructing a global

Graduate School of Mathematics, Nagoya University.

Department of Mathematics, Faculty of Science and Technology, Keio University.