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A Yang-Mills-Higgs gradient flow on R3 blowing up at infinity
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1. Yang-Mills-Higgs functional. We prove
long time existence of the Yang-Mills-Higgs gra-
dient flow on Euclidean 3-space R a, with a
geometric characterization at the singular points.
Since a solution of the Yang-Mills-Higgs gradient
flow constructed in this paper has geometrically
reasonable properties at the ideal boundary of
R3, we are motivated to propose our definition of
a global solution for the gradient flow.

Let P be the trivial bundle R3 x SU(2)
over and let be the set of pairs of connec-
tions A on the principal bundle P and Higgs field

R Ron ’an u(2)-valued map on where u
(2) is the Lie algebra of SU (2). The Yang-
Mills-Higgs functional is a functional on C de-
fined by the following" for (A, ) C,

1) E (A, f3(lFal + Ida ]2) dV
where da is the covariant exterior differenti,ation

on the bundle P and Fa denotes the curvature
2-form of A. Critical points of the functional (1)
are called Yang-Mills-Higgs configurations.

2. Yang-Mills-Higgs gradient flow. We
define the following compactified configuration
space (cf. Groissor [2])"

C- {(A, q))’E(A, q)) <
I<x)l 1 as lxl }.

The configuration space C has a geometric in-
variant, N(A, (P), defined by

(1 N( A, ) 4re F A d.
N (A, q))is called the mon@ole number (or
magnetic charge) of (,4, q) ). Groissor [2] showed
that if (A, q) C, then N(A, q)) is an integer
and the functional N" C---* Z gives a path com-

ponent decomposition on C. Restricting q) to a
S2 3

sufficiently large 2 shpere in R determines a
homotopy class of maps on Let S be the
ideal boundary of R3. We can identify S with
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Sthe unit 2-sphere (1) canonically’ given q), we
define a map " S---* S by

(r, co)
(3) (w) -lim I(r

X
where q(r, co) q(x), r- Ixl, co--. Then,

we have N(A, q) deg((P). Furthermore,
2N(A, ) gives the first Chern number of some

3 2"bundle over Thus, in constructing a solution
of (4), it is reasonable to take its behavior at the
ideal bundary S into account.

We consider the following heat flow associ-
ated with the Yang-Mills-Higgs functional (1)"

[ Ot A dFa [, dA ],
(4) O q) A a CI),
with the initial condition (A(0), P(0)) (Ao,

qo).
We call a curve (A (t), (t)) in the con-

figuration space C a smooth solution of (4) if
(A(t), q(t)) satisfies (4) in the classical sense.

To fix the geometrical meaning for solutions of
(4), we introduce the following notion"

Definition 1. A smooth solution
(A(t), (t)) of (4) is called extendable on (0, T]
if the following conditions are satisfied"

(i) For each t (0, T], there exists a gauge
transformation 9 (t) such that 9" (t)A (t)
extends to a smooth connection over
= S (1).

(ii) N(A (t), q)(t)) of (4) is independent of
t (0, T].

Let be a positive constant. For coo $2 (1),
let B (coo) be the geodesic ball centered at coo
with the radius z-.

Definition 2. A smooth solution (A(t),
(t)) of (4) of has the t-property if

lim inff, r([Fa (t, r,()
r(O)o)

+ IdA(I)(t, r, co)[)dco <- s,
for sufficiently small r, for all t (0, T] and
for all coo $2.

This definition gives a criterion for obtain-
ing an extendable solution, and is one of the fun-
damental observations for constructing a global


