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A Yang-Mills-Higgs gradient flow on R’ blowing up at infinity
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1. Yang-Mills-Higgs functional. We prove
long time existence of the Yang-Mills-Higgs gra-
dient flow on Euclidean 3-space Rs, with a
geometric characterization at the singular points.
Since a solution of the Yang-Mills-Higgs gradient
flow constructed in this paper has geometrically
reasonable properties at the ideal boundary of
Ra, we are motivated to propose our definition of
a global solution for the gradient flow.

Let P be the trivial bundle R® X SU (2)
over R’ and let C be the set of pairs of connec-
tions A on the principal bundle P and Higgs field
® on R®: an 3u(2)-valued map on R’ where 3u
(2) is the Lie algebra of SU (2). The Yang-
Mills- Higgs functional is a functional on C de-
fined by the following: for (A, @) € C,

1 B4 o) = [ (R +la,0av

where d, is the covariant exterior differentiation
on the bundle P and F, denotes the curvature
2-form of A. Critical points of the functional (1)
are called Yang-Mills-Higgs configurations.

2. Yang-Mills-Higgs gradient flow. We
define the following compactified configuration
space (cf. Groissor [2]):

C=1{(A, ®): E(A, ®) < oo,

|®(x)| — 1as|x|— o).
The configuration space C has a geometric in-
variant, N(A, @), defined by

1
2) N(A, &) = EJ;SFA A d, 0.

N (A, @) is called the monopole number (or
magnetic charge) of (A, @). Groissor [2] showed
that if (A, @) € C, then N(A, @) is an integer
and the functional N : C— Z gives a path com-
ponent decomposition on C. Restricting @ to a
sufficiently large 2-shpere S%in R® determines a
homotopy class of maps on S? Let S, be the
ideal boundary of R’. We can identify S, with
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the unit 2-sphere S®(1) canonically : given @, we
define a map @: S, — S? by

= . O, w)
(3) @(CI)) = lim m,

x
where @(r, w) = O(x), r = lz|, ® = T« Then,

we have N (A, ®) = — deg (@). Furthermore,
2N (A, @) gives the first Chern number of some
bundle over S Thus, in constructing a solution
of (4), it is reasonable to take its behavior at the
ideal bundary S, into account.

We consider the following heat flow associ-
ated with the Yang-Mills-Higgs functional (1):

@) {6,A= —djF, — [0,d,0],

0,0 = A,D,
with the initial condition (A (0), @(0)) = (A,,
D,).

We call a curve (A (¢), @ (¢)) in the con-
figuration space C a smooth solution of (4) if
(A(t), ©(t)) satisfies (4) in the classical sense.
To fix the geometrical meaning for solutions of
(4), we introduce the following notion:

Definition 1. A smooth solution
(A(t), @ (1)) of (4) is called extendable on (0, T]
if the following conditions are satisfied :

(i) For each t € (0, T1, there exists a gauge
transformation g (¢) such that g* () A (¢)
extends to a smooth connection over S,
= S*(1).

(i) NA(), ®(t)) of (4) is independent of

te (0, T1.

Let € be a positive constant. For w, € S*(1),
let B, (w,) be the geodesic ball centered at w,
with the radius 7.

Definition 2. A smooth solution (A(2),
@(t)) of (4) of has the e-property if

(5) lim inf r(F(t, 7, w)]

7—o0 By(wg)

+ |d, o, r, w)|dw < e,
for sufficiently small 7, for all t € (0, T] and
for all w, € S°.

This definition gives a criterion for obtain-
ing an extendable solution, and is one of the fun-
damental observations for constructing a global



