Exotic group actions in dimension four and Seiberg-Witten theory

By Masaaki UE

Division of Mathematics, Faculty of Integrated Human Studies, Kyoto University (Communicated by Heisuke HIRONAKA, M. J. A., April 13, 1998)

Topology of smooth 4-manifolds has been studied extensively by Donaldson and Seiberg-Witten theory. In [10] we used Donaldson invariants of degree 0 to give examples of exotic free actions of certain finite groups in dimension 4. In this paper we will generalize the result in [10] by Seiberg-Witten theory. We discuss Donaldson and Seiberg-Witten invariants for connected sums of 4-manifolds and rational homology 4-spheres in §1 according to [11]. In §2 by the constructions similar to those in [10] together with Cooper-Long's result [1] we show

Theorem. For any nontrivial finite group G there exists a 4-manifold that has infinitely many free G actions so that their orbit spaces are homeomorphic but mutually non-diffeomorphic.

§1. Invariants for some reducible manifolds. Let us recall the definitions of Donaldson and Seiberg-Witten invariants briefly. See [2], [6], [8], [12] for details. Let X be a closed smooth oriented 4-manifold with $b_1(X) = 0$, $b_2^+(X) > 1$ and let P be a principal SO(3) bundle over Xwith $w_2(P) \equiv w \pmod{2}$ for some $w \in H^2(X, \mathbb{Z})$ (and hence P is a reduction of a U(2) bundle \tilde{P}). Hereafter $w \pmod{2}$ is denoted simply by w. Let \mathscr{G}_P be the set of automorphisms of P covered by those of \tilde{P} with det = 1. Define \mathcal{M}_{P} to be the space of ASD (anti-self-dual) connections modulo \mathscr{G}_P with respect to a generic metric on X. Then for the symmetric product $z = x^t v_1 \cdots v_s$ with the generator x of $H_0(X)$ and $v_i \in H_2(X)$, there exists a subspace $\mathcal{M}_P \cap V_z$ of codimension 4t +2s in \mathcal{M}_P such that the Donaldson invariant $D_X^w(z)$ is defined by the number of points in \mathscr{M}_P \cap V_z counted with sign for a bundle P with $w_2(P)$ $\equiv w \text{ and } -2p_1(P) - 3(1 + b_2^+(X)) = 4t +$ 2s (put $D_x^w(z) = 0$ if there does not exist such a bundle). Here note that if there are no flat connections on any SO(3) bundle over X with w_2 $\equiv w$ then $\mathcal{M}_{P} \cap V_{z}$ is compact ([6]). Otherwise to avoid the flat connections we replace (X, P) by $(X \# \overline{CP}^2, P \# Q)$, where Q is the reducible

SO(3) bundle over \overline{CP}^2 with w_2 being the Poincare dual of the generator z_0 of $H_2(\overline{CP}^2, \mathbb{Z})$ modulo 2, and replace $D_X^w(z)$ by $D_{X\#\overline{CP}^2}^{w+z_0}(zz_0)$ (Morgan-Mrowka trick, [6]). In Seiberg-Witten theory, we consider a spin^c structure c on X, the associated \pm spinor bundle W^{\pm} , and its determinant complex line bundle L over X. Then the Seiberg-Witten moduli space $\mathcal{M}_X(c)$ is the space of pairs of connections A on L and cross sections ϕ of W^{\pm} satisfying the Seiberg-Witten equation modulo Map (X, S^1) .

 $(SW) \ \mathcal{D}_A(\phi) = 0, \ F^+(A) + \delta = (\phi^* \otimes \phi)_{n}$ (see [8], [12] for the definitions.) The space $\mathcal{M}_{X}(c)$ is a compact oriented manifold of dimension $d(L) = (c_1(L)^2 - 2\chi - 3\sigma)/4$ for a generic metric on X where χ and σ are the euler number and the signature of X. Hereafter $c_1(L)$ is denoted simply by L. The Seiberg-Witten (SW) invariants $SW_{X}(L)$ for L with d(L) = 0 is the sum of the numbers of points in $\mathcal{M}_{x}(c)$ counted with sign for all $spin^{c}$ structures c corresponding to L. (see [8] for the definition in case d(L) > 0.) L is called a Seiberg-Witten (SW) class if SW_X $(L) \neq 0. X$ is called SW simple if $SW_X(L) = 0$ whenever d(L) > 0. Hereafter we assume that $H_1(X, \mathbf{Z}) = 0, b_2^+(X) > 1$, and Y is a rational homology 4-sphere. Moreover we assume that Xis SW simple and KM simple, that is, $D_X^w(x^2z) =$ $4D_X^w$ (z) for any $w \in H^2(X, \mathbb{Z}), z \in Sym$ (H_0) $(X) \oplus H_2(X)$), and satisfies the following equation discussed in [12].

(W)
$$D_X^w((1 + x/2)e^v)$$

 $= 2^{2^{+(7\chi+11\sigma)/4}} e^{Q/2} \sum (-1)^{(w^2+wL)/2} SW_X(L) e^L(v)$ where $v \in H_2(X)$, Q is the intersection form of X, and the sum on the right hand side is taken over all the SW classes L of X.

The following results about these invariants for X # Y may be known to the experts, but we cannot find them in explicit forms in the literature.

Proposition 1.1 [11]. If X satisfies the above