A special divisor on a double covering of a compact Riemann surface

By Shigeo MITSUNARI

Research Institute for Mathematical Sciences, Kyoto University (Communicated by Heisuke HIRONAKA, M. J. A., April 13, 1998)

Introduction. By a curve we shall mean a connected compact Riemann surface. Let l(D): $= \dim H^0(C, \mathcal{O}(D))$ and $c(D) := \deg D - 2l(D)$ +2 for a divisor D on a curve C of genus $g \ge$ 2. It is easy to check $c(D) = c(K_c - D)$ by using the Riemann-Roch theorem. Here K_c is a canonical divisor of C. Clifford's theorem states that $c(D) \ge 0$ if l(D) > 0 and $l(K_c - D) > 0$; moreover if there is a divisor D such that l(D) > 0, c(D) = 0 but $D \neq 0$ and $D \neq K_c$, then C is a hyperelliptic curve. In other words, we can say that a curve has a special divisor D with c(D) = 0 if and only if it is 0-hyperelliptic, where a special divisor D means $2 \leq \deg D \leq g$ -1 and l(D) > 0 (so $l(K_c - D) > 0$), a g'hyperelliptic curve means a curve which is a double covering of a curve of genus g'.

We would like to classify double coverings of a curve with small genus by the index cliff $(C) := \min\{c(D) : D \text{ is a special divisor on } C,$ $l(D) \ge 2\}$. We show that a curve having a special divisor D with small c(D) is g'-hyperelliptic with $g' \le c(D)/2$ [Theorem 1], and conversely, a g'-hyperelliptic curve has a special divisor Dwith c(D) = 2g' [Theorem 2]. In particular, we obtain a necessary and sufficient condition for a curve to be 1-hyperelliptic [Corollary].

Main results. Theorem 1. Let C be a curve of genus $g \ge 2$. Assume that there is an effective base-point-free divisor D with deg $D \le g - 1$, $l(D) \ge c(D) + 3$. Then c(D) is even and C is a g'hyperelliptic curve with some $g' \le c(D)/2$, $g \ge 6g' + 5$.

Proof. To give a proof of this theorem, we use the following inequality of Castelnuovo [1] (p.116):

Lemma. Let C' be a curve that admits a birational mapping onto a (not necessarily smooth) nondegenerate curve (i.e., a curve not contained in any hyperplane of the projective n-space \mathbf{P}^n) of degree d'in \mathbf{P}^n . Then the genus of C' satisfies the inequality $g(C') \le m(m-1)(n-1)/2 + m\varepsilon$, where m: = [(d'-1)/(n-1)] and ε : = (d'-1) - m(n-1).

Under the hypothesis of Theorem 1, c:= $c(D) \ge 0$ by Clifford's theorem. Since D is base-point-free, we can define a map $\varphi: C \to \mathbf{P}^n$ associated with $D. \varphi(C)$ is non-degenerate by construction. Let C' be the normalization of $\varphi(C), \nu: C' \to \varphi(C)$ the normalization map and $\tilde{\varphi}: C \to C'$ the induced map of φ . Put d: = deg D, n: = l(D) - 1, g': = g(C') and d': = deg $\varphi(C)$. Then c = d - 2n and $n \ge c + 2$.

Claim. deg $\varphi = 2$.

1. If deg $\varphi \geq 3$, then $d' \leq d/3$ and $n - d' \geq n$ -d/3 = (n - c)/3 > 0. The above lemma implies g = 0 so $C' = \mathbf{P}^1$. Put $\mathcal{O}_{\mathbf{P}^1}(N) := \nu^* \mathcal{O}_{\mathbf{P}^n}(1)$. Since $\varphi(C)$ is nondegenerate, $\nu^* : \Gamma(\mathbf{P}^n, \mathcal{O}(1))$ $\rightarrow \Gamma(\mathbf{P}^1, \mathcal{O}(N))$ is injective, so we get $n \leq N$. Since $\mathcal{O}(D) = \tilde{\varphi}^* \mathcal{O}(N), d = N \deg \tilde{\varphi} = N \deg \varphi$. Therefore $3 \leq \deg \varphi = d/N \leq d/n < 3$, which is impossible.

2. If deg $\varphi = 1$, then d' = d, g' = g and m = [(d'-1)/(n-1)] = [2 + (c+1)/(n-1)].

- (a) If $n \ge c+3$, then m = 2, $\varepsilon = c+1$ and $g \le n-1+2(c+1)$ (by Castelnuovo) = 2d-3n+1 (by c = d-2n) $\le d-2$ (by $3n \ge d+3$). This contradicts $d \le g-1$.
- (b) If n = c + 2, then m = 3, $\varepsilon = 0$ and $g \le 3$ (n 1) = d 1, which also conflicts.

As a consequence we get deg $\varphi = 2$, so $\tilde{\varphi}$ is a double covering map. Therefore d' = d/2; hence d and c are even. Again using Castelnuovo's lemma, we get $g' \leq d' - n = c/2$. Since $g-1 \geq d = c + 2n \geq 3c + 4 \geq 6g' + 4$, Theorem 1 is proved. Q.E.D.

Proposition. In the above notation, let σ be the involution of C compatible with $\tilde{\varphi}$. Then D is invariant under the action of σ^* .

Proof. If x in the support of D is not a