Generating functions of the Jacobi polynomials and related Hilbert spaces of analytic functions

By Shigeru Watanabe
Center for Mathematical Sciences, The University of Aizu (Communicated by Shokichi IYANAGA, M. J. A., March 12, 1998)

1. Introduction. In the previous paper [5], we showed that a generating function of the Gegenbauer polynomials can be regarded as the integral kernel of a unitary mapping from an L^{2} space onto a Hilbert space of analytic functions. Moreover, we gave in [6] a similar construction for the system of the zonal spherical functions on the homogeneous space $U(n) / U(n-1)$, which is geometrically analogous to the space $S O(n) /$ $S O(n-1)$ whose zonal spherical functions are essentially given by the Gegenbauer polynomials. Problems of this kind were discussed first in [1]. The purpose of this paper is to show that a similar construction is also possible for the Jacobi polynomials, which are generalizations of the Gegenbauer polynomials.

Let $\boldsymbol{R}, \boldsymbol{C}$ be the fields of real and complex numbers, respectively. For positive numbers α and β, the Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x), n=0$, $1,2, \cdots$, are defined by the Rodrigues formula (cf. [2]) :

$$
\begin{aligned}
& P_{n}^{(\alpha, \beta)}(x) \\
= & \frac{(-1)^{n}}{2^{n} n!}(1-x)^{-\alpha}(1+x)^{-\beta} \frac{d^{n}}{d x^{n}}\left[(1-x)^{\alpha+n}(1+x)^{\beta+n}\right] .
\end{aligned}
$$

Then the system $\left\{P_{n}^{(\alpha, \beta)}(x) ; n=0,1,2, \cdots\right\}$ has the orthogonality relations (cf. [2]):

$$
\begin{aligned}
& \int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x \\
& \quad=\left\{\begin{array}{c}
0 \\
\frac{2^{\alpha+\beta+1}}{2 n+\alpha+\beta+1} \frac{\Gamma(n+\alpha)}{\Gamma(n+1) \Gamma(n+\alpha+\beta+1)} \\
(n=m)
\end{array}\right.
\end{aligned}
$$

and the generating function (cf. [4]) : for $-1<x$ <1 and $z \in \boldsymbol{C},|z|<1$,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(2 n+\alpha+\beta+1)(\alpha+\beta+1)_{n}}{(\alpha+1)_{n}} z^{n} P_{n}^{(\alpha, \beta)}(x) \\
& \quad=\frac{(\alpha+\beta+1)(z+1)}{(1-z)^{\alpha+\beta+2}}{ }_{2} F_{1}\left(\frac{\alpha+\beta+2}{2}\right.
\end{aligned}
$$

$\left.\frac{\alpha+\beta+3}{2} ; \alpha+1 ; \frac{2 z(x-1)}{(1-z)^{2}}\right)$,
where $(a)_{n}=\Gamma(a+n) / \Gamma(a)(\Gamma$ is the Gamma function) and ${ }_{2} F_{1}(a, b ; c ; t)$ is the Gaussian hypergeometric function. We denote by $F_{\alpha, \beta}(z$, x) the right hand side of this formula.

Let $\varphi_{n}^{(\alpha, \beta)}(x)$ be the normalization of $P_{n}^{(\alpha, \beta)}$ (x) with respect to the inner product defined by
$(\phi, \varphi)_{\alpha, \beta}=\int_{-1}^{1} \overline{\psi(x)} \varphi(x)(1-x)^{\alpha}(1+x)^{\beta} d x$. Then the system of the functions $\varphi_{n}^{(\alpha, \beta)}(x), n=$ $0,1,2, \cdots$, is an orthonormal basis of the Hilbert space $\mathscr{L}_{\alpha, \beta}^{2}=L^{2}\left((-1,1),(1-x)^{\alpha}(1+\right.$ $x)^{\beta}$) with the inner product $(,)_{\alpha, \beta}$.

In this paper, we shall give a Hilbert space $\mathscr{H}_{\alpha, \beta}$ of analytic functions and a unitary operator of $\mathscr{L}_{\alpha, \beta}^{2}$ onto $\mathscr{H}_{\alpha, \beta}$ whose integral kernel is the generating function $F_{\alpha, \beta}(z, x)$.

Suppose that α, β are positive numbers throughout this paper.
2. Hilbert space $\mathscr{H}_{\alpha, \beta}$. We define the function $\rho_{\alpha, \beta}(t)$ for $0<t<1$ by
$\rho_{\alpha, \beta}(t)=\frac{\alpha+\beta-1}{t^{2}} \int_{t}^{1} u^{-\frac{\alpha+\beta+1}{2}}(1-u)^{\beta-1} d u \int_{\frac{t}{u}}^{1} v^{-\frac{\beta-\alpha+1}{2}}(1-v)^{\beta-1} d v$, and denote by $\mathscr{H}_{\alpha, \beta}$ the Hilbert space of analytic functions on the unit open disk B in \boldsymbol{C} with the inner product defined by

$$
<f, g>_{\alpha, \beta}=\int_{B} \overline{f(z)} g(z) \rho_{\alpha, \beta}\left(|z|^{2}\right) d z
$$

where $d z=d x d y, z=x+i y(x, y \in \boldsymbol{R})$. The functions $g_{n}(z)=z^{n}, n=0,1,2, \cdots$, form an orthogonal basis in $\mathscr{H}_{\alpha, \beta}$ and the norm $\left\|g_{n}\right\|=$ $\sqrt{<g_{n}, g_{n}>_{\alpha, \beta}}$ is given in the following.

Lemma 1. For a nonnegative integer n, we have

$$
\begin{aligned}
& \left\langle g_{n}, g_{n}>_{\alpha, \beta}\right. \\
= & \frac{2 \pi(\Gamma(\beta))^{2}}{2 n+\alpha+\beta+1} \frac{\Gamma(n+1)}{\Gamma(n+\beta+1)} \frac{\Gamma(n+\alpha+1)}{\Gamma(n+\alpha+\beta+1)}
\end{aligned}
$$

Proof. In exchanging orders of integrals, we

