# Orbits of triangles obtained by interior division of sides 

By Hajime SATO<br>Department of Mathematics, Gotemba-minami Highschool<br>(Communicated by Kiyosi ITÔ, M. J. A., Jan. 12, 1998)


#### Abstract

Plane triangles are classified by similarity. Let $\Omega$ be the set of these equivalence classes of triangles, and $[A B C] \in \Omega$ be the class of triangles which are similar to $\triangle A B C$, Putting $x=\angle A, y=\angle B, z=\angle C,[A B C]$ is represented by a point in $\Pi=$ $\{(x, y, z) \mid x+y+z=\pi, x, y, z>0\}$. By making interior division of sides of $\triangle A B C$, we define an orbit in $\Pi$, starting from $[A B C]$. It is determined by a differentiable dynamical system, and is the intersection of $\Pi$ and the surface $\cot x+\cot y+\cot z=$ const.


Key words: Triangles; interior division; convex closed curve; four-vertex theorem.

1. Introduction. We consider here the set $\boldsymbol{T}$ of all triangles on the Euclidean plane. Triangles in $\boldsymbol{T}$ are classified by similarity. In this note, we say that $\triangle A B C$ is similar to $\Delta A^{\prime} B^{\prime} C^{\prime}$ and write as $\triangle A B C \simeq \Delta A^{\prime} B^{\prime} C^{\prime}$ if $\angle A=\angle A^{\prime}, \angle B$ $=\angle B^{\prime}, \angle C=\angle C^{\prime}$. It defines an equivalency. Put
(1.1) $\quad[A B C]=\left\{\Delta A^{\prime} B^{\prime} C^{\prime} \mid \Delta A^{\prime} B^{\prime} C^{\prime} \simeq \Delta A B C\right\}$

Obviously $[A B C] \cap\left[A^{\prime} B^{\prime} C^{\prime}\right] \neq \emptyset$ if and only if $[A B C]=\left[A^{\prime} B^{\prime} C^{\prime}\right]$. We define
(1.2) $\Omega=(\boldsymbol{T} / \simeq)=\{[A B C] \mid \Delta A B C \in \boldsymbol{T}\}$.

Note that, in general, $[A B C],[B C A]$, and [ $C A B$ ] are mutually distinct in $\Omega$.

Write $\angle A=x, \angle B=y, \angle C=z$, then [ $A B C$ ] is represented as a point in $\boldsymbol{R}^{3} . \Omega$ is idenified with the set

$$
\text { (1.3) } \Pi=\{(x, y, z) \mid x+y+z=\pi, x>0, y>0, z>0\}
$$

The class of regular triangles is denoted by a point $(\pi / 3, \pi / 3, \pi / 3)$. Points on the boundary of $\Pi$ denote degenerate triangles. A point in $\Pi$ corresponding to $[A B C]$ is denoted also by [ $A B C$ ].

Consider a triangle $\triangle A B C \in[A B C]$. On each side of it, take the point of interior division with the ratio $t:(1-t)$, where $0 \leqq t \leqq 1$. The point on the side $A B$ is denoted by $A(t)$. Similarly for $B(t)$ and $C(t)$ on $B C$ and $C A$, respectively. Put
(1.4) $T_{0}(A B C)=\{[A(t) B(t) C(t)] \mid 0 \leqq t \leqq 1\}$. $T_{0}(A B C)$ is represented by a continuous arc in $\Pi \subset \boldsymbol{R}^{3}$ which connects $[A B C]$ with $[B C A]$.

[^0]Obviously $T_{0}(A B C) \cup T_{0}(B C A) \cup T_{0}(C A B)$ is a closed curve in $\Pi$. Since $B=A(1), C=$ $B(1), A=C(1)$, we may define $[A(1+t)$ $B(1+t) C(1+t)], 0 \leqq t \leqq 1$, as $[B(t) C(t) A$ $(t)], 0 \leqq t \leqq 1$. Similarly $[A(2+t) B(2+$ $t) C(2+t)]$ may be defined as $[C(t) A(t) B$ $(t)]$. Now for any $t \in \boldsymbol{R}$, let $[t]$ be the greatest integer not exceeding $t$. Writing $t^{*}=t-[t], 0$ $\leqq t^{*}<1$, we define

$$
[A(t) B(t) C(t)]=\left\{\begin{array}{l}
{\left[A\left(t^{*}\right) B\left(t^{*}\right) C\left(t^{*}\right)\right]} \\
\text { if }[t]=3 m+0 \text { for some integer } m  \tag{1.5}\\
{\left[B\left(t^{*}\right) C\left(t^{*}\right) A\left(t^{*}\right)\right]} \\
\text { if }[t]=3 m+1 \\
{\left[C\left(t^{*}\right) A\left(t^{*}\right) B\left(t^{*}\right)\right]} \\
\text { if }[t]=3 m+2 \text { for some integer } m
\end{array}\right.
$$ For example, if $-1<t<0$, then $[t]=-1=$ $-3+2$ and $t^{*}=1-|t|$. Hence $[A(t) B(t)$ $C(t)]=[C(1-|t|) A(1-|t|) B(1-|t|)]$. By (1.5), we define as a continuation of (1.4),

(1.6) $T(A B C)=\{[A(t) B(t) C(t)] \mid t \in \boldsymbol{R}\}$, which is represented by a closed curve in $\Pi$.

There are some investigations on triangles obtained by interior division of sides of $\triangle A B C$, e.g. [4]. However, as far as I know, we have almost no knowledge about the set $T(A B C)$, except the case when $t=1 / 2$, where $\Delta B(1 / 2) C(1 /$ 2) $A(1 / 2) \simeq \triangle A B C$.

In this note we investigate the set $T(A B C)$. Establishing some lemmas on $2 \times 2$ matrices, we will see that $T(A B C)$ is a continuously differentiable curve, and find the system of differential equations which determines the curve. It shows that $T(A B C)$ is a convex curve, represented by the intersection of $\Pi$ and the surface


[^0]:    1991 Mathematics Subject Classification. Primary 51M04; Secondary 51M15.

