Une tordue de rang 4 d'une courbe elliptique de conducteur 15

By Emmanuel HALBERSTADT*) and Alain KRAUS**) (Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1998)

Abstract: For every elliptic curve over **Q** having conductor 15, the Mordell-Weil group over Q is finite. In this paper, for one of these curves, we exhibit a quadratic twist whose Mordell-Weil group has rank 4, as well as a basis of this group modulo torsion.

Introduction. Soit *E* une courbe elliptique sur Q. Pour tout entier d libre de carrés, notons E_d la tordue de E par \sqrt{d} . Lorsque E est fixée et d varie, que peut-on dire du rang de E_d ? D'après une conjecture de Honda (cf. [3]), le rang de E_d serait borné, i.e. majoré par une constante, dépendant de E mais pas de d. Par ailleurs on sait qu'il y a une infinité de d pour lesquels E_d est de rang 0. Considérons un tel d. Si le rang de E est grand, on a une variation importante du rang entre E et E_d , mais le conducteur de E_d est en général beaucoup plus gros que celui de ${\it E}$. Il est moins facile d'obtenir une variation du rang dans le bon sens. Plus précisément, supposons que le conducteur N(E) de E soit minimum parmi les conducteurs des courbes elliptiques sur Q qui sont $ar{\mathbf{Q}}$ -isomorphes à E. On désire trouver des dpour lesquels, lorsqu'on passe de E à E_d , l'augmentation du rang soit aussi grande que possible.

Dans cet article, nous donnons, en partant d'une construction indiquée dans [6] (cf. ci-dessous), un exemple dans lequel E est de rang 0 et de conducteur 15, alors que $\boldsymbol{E_d}$ est de rang 4 et de conducteur: $N(E_d) = 7344061935$. On obtient aisément quatre points de $E_d(\mathbf{Q})$ indépendants (modulo la torsion), et une 2-descente montre que le rang de E_d est bien 4. Nous montrons en fait que les quatre points obtenus forment une base de $E_d(\mathbf{Q})$ modulo la torsion. A cet effet, vu la taille de $N(E_d)$, on ne peut pas utiliser directement les résultats de [5], mais on exploite le lien entre E_d (Q) et E (K), où $K = \mathbf{Q}(\sqrt{d})$.

Partons de la courbe elliptique E définie par l'équation minimale suivante:

(1) $y^2 + xy + y = x^3 + x^2 - 10x - 10$. La courbe \boldsymbol{E} est notée 15A1 dans les tables de [2]. Par ailleurs on sait que E est un modèle de la courbe modulaire X_0 (15) (cf. [4]), en particulier E est une courbe de Weil. Posons:

$$d = -22127 = -7 \times 29 \times 109.$$

Voici un modèle minimal de E_d : (2) $y^2 + xy + y = x^3 + x^2 - 4906241376x +$ 61174463688624.

Considérons les quatre points de $E_d(\mathbf{Q})$ suivants:

$$\begin{cases} P_1 = (2799, 6888000), \\ P_2 = (7566, 4944653), \\ P_3 = (-37269, 13884458), \\ P_4 = (-40076, 13928075). \end{cases}$$

Le résultat que nous avons en vue est alors le suivant:

Théorème 1. Avec les notations ci-dessus, le groupe de Mordell-Weil $E_d(\mathbf{Q})$ est de rang 4. Plus précisément, les points P_1 , P_2 , P_3 , P_4 forment une base de $E_d(\mathbf{Q})$ modulo la torsion.

Principe de la démonstration. Expliquons d'abord l'origine de la courbe E. Soient b un rationnel distinct de 0, 1, -1 et $a = \left(\frac{b^2 + 1}{2b}\right)^2$. Considérons, comme dans [6], la courbe elliptique E d'équation

$$y^2 = x(x-1)(x-a),$$

et la tordue E_D de E par \sqrt{D} , où D est un certain élément de $\mathbf{Q}(T)$, dépendant de b (cf. [6, Th. 6, p. 960] pour la valeur de D). On dispose donc de trois points P_1 , P_2 , P_3 de $E_D(\mathbf{Q}(T))$ indépendants modulo la torsion (cf. loc. cit.). Pour presque tout rationnel t, lorsqu'on spécialise T en t, on obtient une courbe elliptique E(t) sur \mathbf{Q} , sa tordue par $\sqrt{D(t)}$ et trois points $P_1(t)$, $P_2(t)$, P_3 (t) de cette tordue, rationnels sur \mathbf{Q} et indépendants modulo la torsion [6, Lemme 1]. Supposons en outre que E(t) soit de Weil et que le

Université Paris VI, Laboratoire de Mathématiques Fondamentales.

Université Paris VI, Institut de Mathématiques.