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§1. Introduction. Let p be an odd prime
and K a Z,-extension field over an algebraic
number field k. Then there exists a tower of ex-
tensions of k,

k:kocklc...

such that k, is a cyclic extension of degree p"
over k. We say that K has a normal basis over k

CknCCKz ka
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if the p- 1nteger ring O, [ ] has a normal basis
over O [,b] for each » (see [5]). In the case where

k is the ray class field modulo p of an imaginary
quadratic field, K. Komatsu obtained the follow-
ing result in [6]:

Theorem A. Let p be an odd prime, F an im-
aginary quadratic field, K a Z,-extension of F and
k the ray class field of F wmodulo p. Then the
Z,-extension KK/ k has a normal basis.

In the present paper, we will show the fol-
lowing theorem :

Theorem 1. Let p, F', K be as in Theorem A
and H, the Hilbert p-class field of F. Then the
Z,-extension K H,/H, has a normal basis except
when the following condition (C) holds:

C) p=3 and F=Q (/—3d ) with a
square-free integer d satisfies d > 1 and d =1
(mod 3).

§2. Key lemma. The following lemma is
essential to prove Theorem 1.

Lemma 1. Let L be an abelian extension field
of an algebraic number field k and K a cyclic exten-
ston of degree p" over k which is unramified outside
p. Suppose that L N K =k and that p does not di-

vide [L: k] If OK,_[ ]/0 [ ] has a normal basis,
then O [p]/O [1] also has a normal basis.

Proof. We put G = Gal (KL/L), I = Gal
(KL/K) and d = [L: k]. It is well known that «

S OK[%] generates a normal basis of OK[%]/Ok

1
[‘5] if and only if 2 a’c is an invertible ele-
) oeG 1
ment of the group ring OK[Z] [G] (see [4], Lemma
1.4). Let @ be a generator of a normal basis of
1
OKL[E]/OL[:E]. By the assumption of our lemma

we can find integers A4, f such that Ad = tp” +
1. We set

X=3>XBo:= ( n(x a‘"a)>A
ogeG tel’ oeG
Then it is easy to see that X is an invertible
1
element of the group ring OK[g] [G]. For any ele-

ment o in G, we have

tp”+1
pX=p( v )dX

= ( (2 a”(oo))A

-1
=2 ®B) ¢
rtel’ oG geG

On the other hand, we see that

oX = 2 B,(op) = 2 B,,-0.
oceG oeG o
Hence we have B,,- = (B,)” for any o, p

in G. If we put B: = B, where e denotes the
identity element of G, then B generates a normal

basis of OK[%]/O,C[—;—] because X = X, B’c.

In the case where p is unramified in F,
Theorem 1 follows from Theorem A and Lemma
1 since the degree of the ray class field modulo p
of F over the Hilbert p-class filed of F is prime
to p.

Let L/k be a Galois extension and K’ a
Galois extension of k contained in L. It is well

1 1
known that if OL[E] /Ok[;] has a normal basis,

1 1
then OK,[E] /Ok[;] also has a normal basis. By

virtue of this fact and Lemma 1, in order to
prove Theorem 1, it is sufficient to show the fol-
lowing Teorem 2, because any Z,,—extension is
unramified outside p.



