A construction of normal bases over the Hilbert *p*-class field of imaginary quadratic fields

By Tsuyoshi ITOH

Department of Mathematics, School of Science and Technology, Waseda University (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1998)

ρ

§1. Introduction. Let p be an odd prime and K a \mathbb{Z}_{p} -extension field over an algebraic number field k. Then there exists a tower of extensions of k,

$$k = k_0 \subset k_1 \subset \cdots \subset k_n \subset \cdots \subset K = \bigcup_{n=0}^{\infty} k_n,$$

such that k_n is a cyclic extension of degree p^n over k. We say that K has a normal basis over k if the *p*-integer ring $O_{k_n}[\frac{1}{p}]$ has a normal basis over $O_k[\frac{1}{p}]$ for each *n* (see [5]). In the case where k is the ray class field modulo p of an imaginary quadratic field, K. Komatsu obtained the following result in [6]:

Theorem A. Let p be an odd prime, F an imaginary quadratic field, K a Z_p -extension of F and k the ray class field of F modulo p. Then the Z_p -extension kK/k has a normal basis.

In the present paper, we will show the following theorem :

Theorem 1. Let p, F, K be as in Theorem Aand H_p the Hilbert p-class field of F. Then the Z_p -extension KH_p/H_p has a normal basis except when the following condition (C) holds:

(C) p = 3 and F = Q $(\sqrt{-3d})$ with a square-free integer d satisfies d > 1 and $d \equiv 1$ (mod 3).

§2. Key lemma. The following lemma is essential to prove Theorem 1.

Lemma 1. Let *L* be an abelian extension field of an algebraic number field *k* and *K* a cyclic extension of degree p^n over *k* which is unramified outside *p*. Suppose that $L \cap K = k$ and that *p* does not divide [L: k]. If $O_{KL}[\frac{1}{p}]/O_L[\frac{1}{p}]$ has a normal basis, then $O_K[\frac{1}{p}]/O_k[\frac{1}{p}]$ also has a normal basis.

Proof. We put G = Gal(KL/L), $\Gamma = \text{Gal}(KL/K)$ and d = [L:k]. It is well known that $\alpha \in O_K[\frac{1}{p}]$ generates a normal basis of $O_K[\frac{1}{p}]/O_k$

 $\left[\frac{1}{p}\right]$ if and only if $\sum_{\sigma \in G} \alpha^{\sigma} \sigma$ is an invertible element of the group ring $O_{\kappa}\left[\frac{1}{p}\right][G]$ (see [4], Lemma 1.4). Let α be a generator of a normal basis of $O_{\kappa L}\left[\frac{1}{p}\right]/O_{L}\left[\frac{1}{p}\right]$. By the assumption of our lemma we can find integers Δ , t such that $\Delta d = tp^{n} + 1$. We set

$$X = \sum_{\sigma \in G} B_{\sigma} \sigma := \left(\prod_{\tau \in \Gamma} \left(\sum_{\sigma \in G} \alpha^{\sigma \tau} \sigma \right) \right)^{\Delta}$$

Then it is easy to see that X is an invertible element of the group ring $O_{K}[\frac{1}{p}][G]$. For any element ρ in G, we have

$$\begin{aligned} X &= \rho^{(\frac{ip^{n}+1}{d})^{d}} X \\ &= \Big(\prod_{\tau \in \Gamma} (\sum_{\sigma \in G} \alpha^{\sigma\tau}(\rho\sigma)) \Big)^{\Delta} = \sum_{\sigma \in G} (B_{\sigma})^{\rho^{-1}} \sigma. \end{aligned}$$

On the other hand, we see that

$$\rho X = \sum_{\sigma \in G} B_{\sigma}(\sigma \rho) = \sum_{\sigma \in G} B_{\sigma \rho^{-1}} \sigma.$$

Hence we have $B_{\sigma\rho^{-1}} = (B_{\sigma})^{\rho^{-1}}$ for any σ , ρ in G. If we put $B := B_e$, where e denotes the identity element of G, then B generates a normal basis of $O_K[\frac{1}{p}]/O_k[\frac{1}{p}]$ because $X = \sum_{\sigma \in G} B^{\sigma} \sigma$.

In the case where p is unramified in F, Theorem 1 follows from Theorem A and Lemma 1 since the degree of the ray class field modulo pof F over the Hilbert p-class filed of F is prime to p.

Let L/k be a Galois extension and K' a Galois extension of k contained in L. It is well known that if $O_L[\frac{1}{p}]/O_k[\frac{1}{p}]$ has a normal basis, then $O_{K'}[\frac{1}{p}]/O_k[\frac{1}{p}]$ also has a normal basis. By virtue of this fact and Lemma 1, in order to prove Theorem 1, it is sufficient to show the following Teorem 2, because any Z_p -extension is unramified outside p.