Power series and asymptotic series associated with the Lerch zeta-function

By Masanori KATSURADA

Department of Mathematics and Computer Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1998)

Key words: Hurwitz zeta-function; Lerch zeta-function; double zeta-function; Mellin-Barnes integral; asymptotic expansion.

1. Introduction. Let s be a complex variable, α and λ real parameters with $\alpha > 0$. Let $\Gamma(s)$ be the gamma-function and $(s)_n = \Gamma(s + n)/\Gamma(s)$ for any integer n denote Pochhammer's symbol. The zeta-function

(1.1)
$$\phi(\lambda, \alpha, s) = \sum_{n=0}^{\infty} e^{2\pi i n \lambda} (n + \alpha)^{-s}$$
 (Re $s > 1$)

was first introduced and studied by Lerch [10] and Lipschitz [11]. For $\lambda \in \mathbb{R} \setminus \mathbb{Z}$ it is continued to an entire function over the *s*-plane, while if $\lambda \in \mathbb{Z}$ it reduces to the Hurwitz zeta-function $\zeta(s, \alpha)$. Note that $\zeta(s, 1) = \zeta(s)$ is the Riemann zeta-function.

It is the main aim of the present paper to study power series and asymptotic series for the Lerch zeta-function $\phi(\lambda, \alpha, s)$ in the second parameter (see (1.6) and (2.2) below), based on Mellin-Barnes type of integral formulae. Two applications of our main result will also be presented. For that purpose we extend the domain of the second parameter as follows. Let ω be a real number fixed arbitrarily with $-\pi/2 < \omega < \pi/2$, and S_{ω} denote the sectorial domain $-\pi/2 + \omega < \arg z < \pi/2 + \omega$. First for any parameter zin S_0 , the analytic continuation of $\phi(\lambda, z, s)$ over the *s*-plane is given by the formula

(1.2)
$$\phi(\lambda, z, s) = \frac{1}{\Gamma(s)(e^{2\pi i s - 1})} \int_{\mathscr{C}} \frac{e^{-zw} w^{s-1}}{1 - e^{2\pi i \lambda - w}} dw,$$

where \mathscr{C} is the contour which starts from infinity, proceeds along the real axis to a small positive δ , rounds the origin counter-clockwise, and returns to infinity along the real axis; arg w varies from 0 to 2π round \mathscr{C} . The expression on the right-hand side of (1.2) shows that $\phi(\lambda, z, s)$ is also an analytic function of z in S_0 . Next if zis in the intersection of S_0 and S_{ω} , then the contour \mathscr{C} can be rotated around the origin by an angle $-\omega$ without altering the value of the integral. The resulting formula provides the analytic continuation of $\phi(\lambda, z, s)$ over the s-plane, for any z in S_{ω} . This operation shows that the domain of z in $\phi(\lambda, z, s)$ can be extended to the whole sector $|\arg z| < \pi$. When $0 < \lambda \leq 1$ and $0 < \alpha \leq 1$, it follows from (1.2) the functional equation (cf. Erdélyi *et al.* [6], p. 26 and p. 29]) (1.3) $\phi(\lambda, \alpha, s)$

$$= \frac{\Gamma(1-s)}{(2\pi)^{1-s}} \left\{ e^{\frac{1}{2}\pi i(1-s)} \sum_{l=0}^{\infty} e^{-2\pi i\alpha(l+\lambda)} (l+\lambda)^{s-1} + e^{\frac{1}{2}\pi i(s-1)} \sum_{l=0}^{\infty'} e^{2\pi i\alpha(l+1-\lambda)} (l+1-\lambda)^{s-1} \right\}$$
(Re s < 0),

where the prime on the latter summation symbol indicates that the term corresponding to l = 0 is to be omitted if $\lambda = 1$.

The present investigation was motivated by the following results (1.4), (1.5) and (1.6), for which we give a brief overview before starting our discussion. It is classically known that the asymptotic expansion

(1.4)
$$\sum_{n=1}^{N} n^{-s} \sim \zeta(s) - \frac{N^{1-s}}{s-1} + \frac{1}{2}N^{-s} - \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!}(s)_{2k-1}N^{-s-2k+1},$$

as $N \to +\infty$, holds for all $s \neq 1$, where B_k ($k \ge 0$) is the k-th Bernoulli number. Berndt [4, p. 150] attributed this formula to Ramanujan. Next let $\Psi(a, c; z)$ denote the solution of Kummer's confluent hypergeometric differential equation zu'' + (c - z)u' - au = 0 satisfying $\Psi(a, c; z)$

¹⁹⁹¹ Mathemtics Subject Classification, Primary 11M35; Secondary 11M41.

The author was supported in part by Grant-in-Aid for Scientific Research (No. 90224485), the Ministry of Education, Science, Sports and Culture in Japan.