Power series and asymptotic series associated with the Lerch zeta-function

By Masanori Katsurada
Department of Mathematics and Computer Science, Kagoshima University,
1-21-35 Korimoto, Kagoshima 890-0065
(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1998)

Key words: Hurwitz zeta-function; Lerch zeta-function; double zeta-function; MellinBarnes integral ; asymptotic expansion.

1. Introduction. Let s be a complex variable, α and λ real parameters with $\alpha>0$. Let $\Gamma(s)$ be the gamma-function and $(s)_{n}=\Gamma(s+$ $n) / \Gamma(s)$ for any integer n denote Pochhammer's symbol. The zeta-function
$\phi(\lambda, \alpha, s)=\sum_{n=0}^{\infty} e^{2 \pi i n \lambda}(n+\alpha)^{-s} \quad(\operatorname{Re} s>1)$ was first introduced and studied by Lerch [10] and Lipschitz [11]. For $\lambda \in \boldsymbol{R} \backslash \boldsymbol{Z}$ it is continued to an entire function over the s-plane, while if $\lambda \in \boldsymbol{Z}$ it reduces to the Hurwitz zeta-function $\zeta(s, \alpha)$. Note that $\zeta(s, 1)=\zeta(s)$ is the Riemann zeta-function.

It is the main aim of the present paper to study power series and asymptotic series for the Lerch zeta-function $\phi(\lambda, \alpha, s)$ in the second parameter (see (1.6) and (2.2) below), based on Mellin-Barnes type of integral formulae. Two applications of our main result will also be presented. For that purpose we extend the domain of the second parameter as follows. Let ω be a real number fixed arbitrarily with $-\pi / 2<\omega<\pi / 2$, and S_{ω} denote the sectorial domain $-\pi / 2+$ $\omega<\arg z<\pi / 2+\omega$. First for any parameter z in S_{0}, the analytic continuation of $\phi(\lambda, z, s)$ over the s-plane is given by the formula

$$
\begin{equation*}
\phi(\lambda, z, s)=\frac{1}{\Gamma(s)\left(e^{2 \pi i s-1}\right)} \int_{\mathcal{B}} \frac{e^{-z w} w^{s-1}}{1-e^{2 \pi i \lambda-w}} d w, \tag{1.2}
\end{equation*}
$$

where \mathscr{C} is the contour which starts from infinity, proceeds along the real axis to a small positive δ, rounds the origin counter-clockwise, and

[^0]returns to infinity along the real axis; arg w varies from 0 to 2π round \mathscr{C}. The expression on the right-hand side of (1.2) shows that $\phi(\lambda, z, s)$ is also an analytic function of z in S_{0}. Next if z is in the intersection of S_{0} and S_{ω}, then the contour \mathscr{C} can be rotated around the origin by an angle $-\omega$ without altering the value of the integral. The resulting formula provides the analytic continuation of $\phi(\lambda, z, s)$ over the s-plane, for any z in S_{ω}. This operation shows that the domain of z in $\phi(\lambda, z, s)$ can be extended to the whole sector $|\arg z|<\pi$. When $0<\lambda \leq 1$ and $0<\alpha \leq 1$, it follows from (1.2) the functional equation (cf. Erdélyi et al. [6], p. 26 and p. 29])
(1.3) $\phi(\lambda, \alpha, s)$
\[

$$
\begin{aligned}
= & \frac{\Gamma(1-s)}{(2 \pi)^{1-s}}\left\{e^{\frac{1}{2} \pi i(1-s)} \sum_{l=0}^{\infty} e^{-2 \pi i \alpha(l+\lambda)}(l+\lambda)^{s-1}\right. \\
& \left.+e^{\frac{1}{2} \pi i(s-1)} \sum_{l=0}^{\infty} e^{2 \pi i \alpha(l+1-\lambda)}(l+1-\lambda)^{s-1}\right\} \quad(\operatorname{Re} s<0),
\end{aligned}
$$
\]

where the prime on the latter summation symbol indicates that the term corresponding to $l=0$ is to be omitted if $\lambda=1$.

The present investigation was motivated by the following results (1.4), (1.5) and (1.6), for which we give a brief overview before starting our discussion. It is classically known that the asymptotic expansion

$$
\begin{align*}
\sum_{n=1}^{N} n^{-s} \sim \zeta(s) & -\frac{N^{1-s}}{s-1}+\frac{1}{2} N^{-s} \tag{1.4}\\
& -\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!}(s)_{2 k-1} N^{-s-2 k+1},
\end{align*}
$$

as $N \rightarrow+\infty$, holds for all $s \neq 1$, where $B_{k}(k$ $\geq 0)$ is the k-th Bernoulli number. Berndt [4, p. 150] attributed this formula to Ramanujan. Next let $\Psi(a, c ; z)$ denote the solution of Kummer's confluent hypergeometric differential equation $z u^{\prime \prime}+(c-z) u^{\prime}-a u=0$ satisfying $\Psi(a, c ; z)$

[^0]: 1991 Mathemtics Subject Classification, Primary 11M35; Secondary 11M41.

 The author was supported in part by Grant-in-Aid for Scientific Research (No. 90224485), the Ministry of Education, Science, Sports and Culture in Japan.

