On the \mathbb{Z}_3 -extension of a certain cubic cyclic field

By Keiichi KOMATSU

Department of Information and Computer Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1998)

In our previous paper [2], we gave the following Theorem for vanishing of Iwasawa invariants of a cyclic extension of odd prime degree over the rational number field \mathbf{Q} .

Theorem A ([2, Cor. 3.6.]). Let l be an odd prime number, k a cyclic extension of degree l over Q, Q_{∞} the cyclotomic Z_{l} -extension of Q and $k_{\infty} = kQ_{\infty}$ the composite field of k and Q_{∞} . Then the following are equivalent:

- (1) The Iwasawa λ -invariant $\lambda_I(k_{\infty}/k)$ of k_{∞} over k is zero
- (2) For any prime ideal \mathfrak{p} of k_{∞} which is prime to l and ramified in k_{∞} over \mathbf{Q}_{∞} , the order of the ideal class of \mathfrak{p} is prime to l.

Moreover, using Theorem A, we gave some examples of vanishing of $\lambda\left(k_{\infty}/k\right)$, in [2]. More precisely, let \boldsymbol{Q}_1 be the initial layer of the cyclotomic \boldsymbol{Z}_3 -extension \boldsymbol{Q}_{∞} of \boldsymbol{Q} , k a cubic cyclic extension over \boldsymbol{Q} with prime conductor \boldsymbol{p} such that $\boldsymbol{p}\equiv 1\pmod{9}$, $k_1=k\boldsymbol{Q}_1$, E_{Q_1} (resp. E_{k_1}) the unit group of \boldsymbol{Q}_1 (resp. k_1) and N_{k_1/Q_1} the norm k_1 over \boldsymbol{Q}_1 . In [2, Example 4.1], we treated the case $(E_{Q_1}:N_{k_1/Q_1}(E_{k_1}))=9$ and $\boldsymbol{p}\not\equiv 1\pmod{27}$, which implies that the prime ideals of k_1 lying above \boldsymbol{p} are principal by genus formula. In this paper, we treat the case $\boldsymbol{p}=73$, which could not be treated in [2]. We note that if $\boldsymbol{p}=73$, then $(E_{Q_1}:N_{k_1/Q_1}(E_{k_1}))=3$ (cf. [2, Example 4.2]).

The main purpose of this paper is to prove the following theorem:

Theorem. Let $\zeta_{73} = e^{\frac{2\pi i}{73}}$, k the unique subfield of $\mathbf{Q}(\zeta_{73})$ of degree 3 over \mathbf{Q} and k_{∞} the cyclotomic \mathbf{Z}_3 -extension of k. Then the λ -invariant $\lambda_3(k_{\infty}/k)$ of k_{∞} over k is zero.

The Theorem will be proved by using Fukuda's method (cf. [1]). We note that Leopoldt's conjecture is valid for the above k (cf. [4, p. 71]) and k is totally real. Now we explain notations.

We denote by Z the rational integer ring. We put $\zeta_n = e^{\frac{2\pi i}{n}}$ for a positive integer n. Let F be a number field. We denote by O_F the integer

ring of F. For an integral ideal \mathfrak{a} of F, we denote by $Cl(\mathfrak{a})$ the ideal class of \mathfrak{a} , O_F/\mathfrak{a} the factor ring of O_F over \mathfrak{a} and $(O_F/\mathfrak{a})^\times$ the set of invertible elements of O_F/\mathfrak{a} . For a Galois extension L of F, we denote by G(L/F) the Galois group of L over F. Let G be a group. For elements g_1, g_2, \ldots, g_r of G, we denote by $\langle g_1, g_2, \ldots, g_r \rangle$ the subgroup of G generated by g_1, g_2, \ldots, g_r .

In order to prove our Theorem, we shall use the following Lemma:

Lemma 1 (cf. [3, Cor. of Prop. 1]). Let F be a totally real number field for which Leopoldt's conjecture is valid. Let A_0 be the l-sylow subgroup of the ideal class group of F and a a product of primes of F lying above l such that $Cl(a) \in A_0$. Then a becomes principal in the n-th layer F_n of F_∞ over F for sufficiently large n.

Let Q_{∞} be the cyclotomic Z_3 -extension of Qand Q_n the n-th layer of Q_∞ over Q for a nonnegative integer n. We let $k_n = kQ_n$ and A_n the 3-sylow subgroup of the ideal class group of k_n . We put $\theta = \zeta_9 + \zeta_9^{-1} = 2\cos\frac{2\pi}{Q}$. Then the roots of the equation $x^3 - 3x + 1 = 0$ are θ , $\theta^2 - 2 = \zeta_9^7 + \zeta_9^{-7}$ and $-\theta^2 - \theta + 2 = \zeta_9^4 + \zeta_9^{-4}$. We note $\mathbf{Q}_1 = \mathbf{Q}(\theta)$ and $x^3 - 3x + 1 \equiv (x + \theta)^3$ 34) $(x + 14)(x + 25) \pmod{73}$. Let \mathfrak{p}_1 be the ideal ($\theta+34$, 73) of O_{Q_1} generated by $\theta+34$, 73. Since $N_{Q_1/Q}(\theta^2 + 6\theta - 3) = (\theta^2 + 6\theta - 3)$ $(5\theta^2 - \theta - 11)(-6\theta^2 - 5\theta + 11) = -73$ and since $\theta^2 + 6\theta - 3 \equiv (\theta + 34)(\theta - 28) \pmod{73}$, we have $\mathfrak{p}_1=(\theta^2+6\theta-3)$. In a similar way, we have $(\theta + 14, 73) = (5\theta^2 - \theta - 11)$ and $(\theta$ +25,73) = $(-6\theta^2 - 5\theta + 11)$. We put \mathfrak{p}_2 = $(5\theta^2 - \theta - 11)$ and $\mathfrak{p}_3 = (-6\theta^2 - 5\theta + 11)$. Note that \mathfrak{p}_1 , \mathfrak{p}_2 , \mathfrak{p}_3 are the distinct prime ideals of Q_1 lying above 73 and $(O_{Q_i}/\mathfrak{p}_i)^{\times} \cong (\mathbf{Z}/73\mathbf{Z})^{\times}$.

We put $P\mathfrak{m}=\{a\in Q_1; a \text{ is prime to }\mathfrak{m}\}$ and $S\mathfrak{m}=\{a\in P\mathfrak{m}; a\equiv 1 \pmod{\mathfrak{m}}\}$ for an ideal \mathfrak{m} of Q_1 . Now, we define a surjective homomorphism φ of P_{73}/S_{73} to an abelian group V=