On the vanishing of Iwasawa invariants of certain cyclic extensions of Q with prime degree II

By Takashi FUKUDA

Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-0005 (Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1998)

Key words: Capitulation; Iwasawa invariants.

1. Introduction. Throughout the paper, we fix an odd prime number ℓ . For a prime number p congruent to one module ℓ , we denote by k_p the unique subfield of $Q(\zeta_p)$ of degree ℓ , where ζ_p is a primitive p-th root of unity. Let $F_{\ell} = \mathbb{Z}/\ell\mathbb{Z}$ and let $(\frac{a}{p})_{\ell}$ be the ℓ -th power residue symbol for an integer a. In [2], we proved the following theorem.

Theorem 1.1 (Corollary 2.3 in [2]). Let pand q be distinct prime numbers congruent to one modulo ℓ satisfying $(\frac{\ell}{p})_{\ell} \neq 1$, $(\frac{p}{q})_{\ell} \neq 1$, $q \not\equiv 1$ (mod ℓ^2). Let $x, y, z \in \mathbf{F}_{\ell}$ such that $(\frac{q\ell^x}{p})_{\ell} =$ 1, $(\frac{\ell p''}{q})_{\ell} = 1$ and $pq^z \equiv 1 \pmod{\ell^2}$. If $xyz \neq$ -1, then for any subfield k of k_pk_q of degree ℓ , the Iwasawa invariants $\lambda_{\ell}(k)$ and $\mu_{\ell}(k)$ are both zero.

In this paper, we investigate the case $(\frac{p}{q})_{\ell} = 1$.

2. Theorems. Let p and q be distinct prime numbers congruent to one modulo ℓ . We assume that $p \not\equiv 1 \pmod{\ell^2}$, $q \not\equiv 1 \pmod{\ell^2}$, $(\frac{\ell}{p})_\ell \neq 1$ and $(\frac{q}{p})_\ell = (\frac{p}{q})_\ell = 1$. We treat the case $(\frac{\ell}{q})_\ell = 1$ and the case $(\frac{\ell}{q})_\ell \neq 1$ separately. In the case $(\frac{\ell}{q})_\ell = 1$, we have the following theorem.

Theorem 2.1. Assume that $(\frac{\ell}{q})_{\ell} = 1$. Let k be a subfield of $k_{p}k_{q}$ of degree ℓ which is different from k_{p} and k_{q} . If $p \notin E_{k}k^{\times \ell}$, then $\lambda_{\ell}(k)$ and $\mu_{\ell}(k)$ are both zero.

Here E_k denotes the unit group of k. In the

case $(\frac{\ell}{q})_{\ell} \neq 1$, we need to specify k explicitly. Let

$$\sigma = \left(\frac{k_{p}/Q}{\ell}\right), \ \tau = \left(\frac{k_{q}/Q}{\ell}\right)$$

be Frobenius automorphisms. We identify the Galois group $G(k_p/Q)$ with $G(k_pk_q/k_q)$ and $G(k_q/Q)$ with $G(k_pk_q/k_p)$ canonically. Then $G(k_pk_q/Q) = \langle \sigma, \tau \rangle$. If k is a subfield of k_pk_q with degree ℓ which is different from k_p and k_q , then $G(k_pk_q/k) = \langle \sigma\tau^i \rangle$ for some $i \in \mathbf{F}_{\ell}^{\times}$. In this case, we have the following theorem.

Theorem 2.2. Assume that $(\frac{\ell}{q})_{\ell} \neq 1$. Let k be a subfield of $k_{p}k_{q}$ which corresponds to $< \sigma\tau^{i} >$ for some $i \in \mathbf{F}_{\ell}^{\times}$ and z the element of $\mathbf{F}_{\ell}^{\times}$ such that $pq^{z} \equiv 1 \pmod{\ell^{2}}$. If $pq^{z'i} \notin E_{k}k^{\times \ell}$, then $\lambda_{\ell}(k)$ and $\mu_{\ell}(k)$ are both zero.

3. **Proof.** We shall prove Theorem 2.2. For a Galois extension k of Q, we denote by A(k) the ℓ -primary part of the ideal class group of k and B(k) the subgroup of A(k) consisting of elements which are invariant under the action of G(k/Q). Let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_s$ be the prime ideals of k which are ramified in k/Q. If k/Q is a cyclic extension of degree ℓ , then B(k) is an ℓ -elementary abelian group of rank s - 1 generated by $cl(\mathfrak{p}_1), cl(\mathfrak{p}_2), \ldots, cl(\mathfrak{p}_s)$.

Let Q_1 be the subfield of $Q(\zeta_{\ell^2})$ of degree ℓ and put

$$\eta = \Big(\frac{\boldsymbol{Q}_1/\boldsymbol{Q}}{q}\Big).$$

Then $G(\mathbf{Q}_1/\mathbf{Q}) = \langle \eta \rangle$. Let \mathfrak{p}_p (resp. \mathfrak{p}_q) be the prime ideal of k lying over p (resp. q). Since $p \not\equiv 1 \pmod{\ell^2}$ and $q \not\equiv 1 \pmod{\ell^2}$, \mathfrak{p}_p and \mathfrak{p}_q inert in $k\mathbf{Q}_1/k$. So, if we show that both \mathfrak{p}_p and \mathfrak{p}_q become principal in $k\mathbf{Q}_1$, we have $\lambda_\ell(k) = \mu_\ell(k) = 0$ from Corollary 3.6 of [3].

In order to show that both \mathfrak{p}_p and \mathfrak{p}_q become

¹⁹⁹¹ Mathematics Subject Clappifications. Primary 11R23.