On the vanishing of Iwasawa invariants of certain cyclic extensions of \boldsymbol{Q} with prime degree II

By Takashi FUKUDA
Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1
Shin-ei, Narashino, Chiba 275-0005
(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1998)

Key words: Capitulation; Iwasawa invariants.

1. Introduction. Throughout the paper, we fix an odd prime number ℓ. For a prime number p congruent to one module ℓ, we denote by k_{p} the unique subfield of $\boldsymbol{Q}\left(\zeta_{p}\right)$ of degree $\boldsymbol{\ell}$, where ζ_{p} is a primitive p-th root of unity. Let $\boldsymbol{F}_{\ell}=\boldsymbol{Z} / \ell \boldsymbol{Z}$ and let $\left(\frac{a}{p}\right)_{\ell}$ be the ℓ-th power residue symbol for an integer a. In [2], we proved the following theorem.

Theorem 1.1 (Corollary 2.3 in [2]). Let p and q be distinct prime numbers congruent to one modulo ℓ satisfying $\left(\frac{\ell}{p}\right)_{\ell} \neq 1,\left(\frac{p}{q}\right)_{\ell} \neq 1, q \neq 1$ $\left(\bmod \ell^{2}\right)$. Let $x, y, z \in \boldsymbol{F}_{\ell}$ such that $\left(\frac{q \ell^{x}}{p}\right)_{\ell}=$ $1,\left(\frac{\ell p^{y}}{q}\right)_{\ell}=1$ and $p q^{z} \equiv 1\left(\bmod \ell^{2}\right)$. If $x y z \neq$ -1 , then for any subfield k of $k_{p} k_{q}$ of degree ℓ, the Iwasawa invariants $\lambda_{\ell}(k)$ and $\mu_{\ell}(k)$ are both zero.

In this paper, we investigate the case $\left(\frac{p}{q}\right)_{e}$ $=1$.
2. Theorems. Let p and q be distinct prime numbers congruent to one modulo ℓ. We assume that $p \not \equiv 1\left(\bmod \ell^{2}\right), q \not \equiv 1\left(\bmod \ell^{2}\right)$, $\left(\frac{\ell}{p}\right)_{\ell} \neq 1$ and $\left(\frac{q}{p}\right)_{\ell}=\left(\frac{p}{q}\right)_{\ell}=1$. We treat the case $\left(\frac{\ell}{q}\right)_{\ell}=1$ and the case $\left(\frac{\ell}{q}\right)_{\ell} \neq 1$ separately. In the case $\left(\frac{\ell}{q}\right)_{\ell}=1$, we have the following theorem.

Theorem 2.1. Assume that $\left(\frac{\ell}{q}\right)_{\ell}=1$. Let k be a subfield of $k_{p} k_{q}$ of degree ℓ which is different from k_{p} and k_{q}. If $p \notin E_{k} k^{\times_{\ell}}$, then $\lambda_{\ell}(k)$ and $\mu_{\ell}(k)$ are both zero.

Here E_{k} denotes the unit group of k. In the

[^0]case $\left(\frac{\ell}{q}\right)_{\ell} \neq 1$, we need to specify k explicitly. Let
$$
\sigma=\left(\frac{k_{p} / \boldsymbol{Q}}{\ell}\right), \tau=\left(\frac{k_{q} / \boldsymbol{Q}}{\ell}\right)
$$
be Frobenius automorphisms. We identify the Galois group $G\left(k_{p} / \boldsymbol{Q}\right)$ with $G\left(k_{p} k_{q} / k_{q}\right)$ and G $\left(k_{q} / \boldsymbol{Q}\right)$ with $G\left(k_{p} k_{q} / k_{p}\right)$ canonically. Then G $\left(k_{p} k_{q} / \boldsymbol{Q}\right)=<\sigma, \tau>$. If k is a subfield of $k_{p} k_{q}$ with degree ℓ which is different from k_{p} and k_{q}, then $G\left(k_{p} k_{q} / k\right)=<\sigma \tau^{i}>$ for some $i \in \boldsymbol{F}_{\ell} \times$. In this case, we have the following theorem.

Theorem 2.2. Assume that $\left(\frac{\ell}{q}\right)_{\ell} \neq 1$. Let k be a subfield of $k_{p} k_{q}$ which corresponds to $\left\langle\sigma \tau^{i}\right\rangle$ for some $i \in \boldsymbol{F}_{\ell} \times$ and z the element of $\boldsymbol{F}_{\ell} \times$ such that $p q^{z} \equiv 1\left(\bmod \ell^{2}\right)$. If $p q^{z / i} \notin E_{k} k^{\times \ell}$, then $\lambda_{\ell}(k)$ and $\mu_{\ell}(k)$ are both zero.
3. Proof. We shall prove Theorem 2.2. For a Galois extension k of \boldsymbol{Q}, we denote by $A(k)$ the ℓ-primary part of the ideal class group of k and $B(k)$ the subgroup of $A(k)$ consisting of elements which are invariant under the action of $G(k / \boldsymbol{Q})$. Let $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{s}$ be the prime ideals of k which are ramified in k / \boldsymbol{Q}. If k / \boldsymbol{Q} is a cyclic extension of degree ℓ, then $B(k)$ is an ℓ-elementary abelian group of rank $s-1$ generated by $\operatorname{cl}\left(\mathfrak{p}_{1}\right), \operatorname{cl}\left(\mathfrak{p}_{2}\right), \ldots, \operatorname{cl}\left(\mathfrak{p}_{s}\right)$.

Let \boldsymbol{Q}_{1} be the subfield of $\boldsymbol{Q}\left(\zeta_{\ell^{2}}\right)$ of degree $\boldsymbol{\ell}$ and put

$$
\eta=\left(\frac{\boldsymbol{Q}_{1} / \boldsymbol{Q}}{q}\right)
$$

Then $G\left(\boldsymbol{Q}_{1} / \boldsymbol{Q}\right)=<\eta>$. Let \mathfrak{p}_{p} (resp. \mathfrak{p}_{q}) be the prime ideal of k lying over p (resp. q). Since $p \not \equiv$ $1\left(\bmod \ell^{2}\right)$ and $q \not \equiv 1\left(\bmod \ell^{2}\right), \mathfrak{p}_{p}$ and \mathfrak{p}_{q} inert in $k \boldsymbol{Q}_{1} / k$. So, if we show that both \mathfrak{p}_{p} and \mathfrak{p}_{q} become principal in $k \boldsymbol{Q}_{1}$, we have $\lambda_{\ell}(k)=\mu_{\ell}(k)=$ 0 from Corollary 3.6 of [3].

In order to show that both \mathfrak{p}_{p} and \mathfrak{p}_{q} become

[^0]: 1991 Mathematics Subject Clappifications. Primary 11R23.

