The third-order factorable core of polynomials over finite fields

By Javier GOMEZ-CALDERON

Department of Mathematics, The Pennsylvania State University, U. S. A.
(Communicated by Shokichi IyAnAGA, M. J. A., Jan. 12, 1998)

Abstract

Let \boldsymbol{F}_{q} denote the finite field of order q and characteristic p. For $f(x)$ in $\boldsymbol{F}_{q}[x]$, let $f^{*}(x, y)$ denote the substitution polynomial $f(x)-f(y)$. In this paper we show that if $f(x)=x^{d}+a_{d-2} x^{d-2}+a_{d-3} x^{d-3}+\cdots+a_{1} x+a_{0} \in F_{q}[x]\left(a_{d-2} a_{d-3} \neq 0\right)$ has degree d prime to q and $f^{*}(x, y)$ has at least one cubic irreducible factor, then $$
f(x)=G\left(x^{4}+\left(4 a_{d-2} / d\right) x^{2}+\left(4 a_{d-3} / d\right) x\right) \text { for some } G(x) \in \boldsymbol{F}_{q}[x]
$$ or $$
f(x)=H\left(\left(x^{3}+\left(3 a_{d-2} / d\right) x+3 a_{d-3} / d\right)^{r+1}\right) \text { for some } H(x) \in \boldsymbol{F}_{q}[x]
$$ where r denotes the number of irreducible cubic factors of $f^{*}(x, y)$ of the form $x^{3}-T y^{3}+$ $A x+B y+C$.

Let \boldsymbol{F}_{q} denote the finite field of order q and characteristic p. For $f(x)$ in $\boldsymbol{F}_{q}[x]$, let $f^{*}(x, y)$ denote the substitution polynomial $f(x)-f(y)$. The polynomial $f^{*}(x, y)$ has frequently been used in questions on the values set of $f(x)$, see for example Wan [8], Dickson [4], Hayes [7], and Gomez-Calderon and Madden [6]. Recently in [2] and [3], Cohen and in [1], Acosta and Gomez-Calderon studied the linear and quadratic factors of $f^{*}(x, y)$. In this paper we consider the irreducible cubic factors of $f^{*}(x, y)$. We show that if $f(x)=x^{d}+a_{d-2} x^{d-2}+a_{d-3} x^{d-3}+\cdots+a_{1} x$ $+a_{0} \in \boldsymbol{F}_{q}[x]\left(a_{d-2} a_{d-3} \neq 0\right)$ has degree d prime to q and $f^{*}(x, y)$ has at least one cubic irreducible factor, then

$$
f(x)=G\left(x^{4}+\left(4 a_{d-2} / d\right) x^{2}+\left(4 a_{d-3} / d\right) x\right)
$$ for some $G(x) \in \boldsymbol{F}_{q}[x]$ or

$$
f(x)=H\left(\left(x^{3}+\left(3 a_{d-2} / d\right) x+3 a_{d-3} / d\right)^{r+1}\right)
$$ for some $H(x) \in \boldsymbol{F}_{q}[x]$ where r denotes the number of irreducible cubic factors of $f^{*}(x, y)$ of the form $x^{3}-T y^{3}+A x+B y+C$.

Now we will give a series of lemmas from which our main result, Theorem 7, will follow. Proofs for Lemmas 1 and 2 can be found in [5].

Lemma 1. Let $f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots$ $+a_{1} x+a_{0}$ denote a monic polynomial over \boldsymbol{F}_{q} of degree d prime to q. Let the irreducible factorization of $f *(x, y)=f(x)-f(y)$ be given by

$$
\begin{aligned}
f^{*}(x, y) & =\prod_{i=1}^{s} f_{i}(x, y) . \\
f_{i}(x, y) & =\sum_{j=0}^{n_{i}} g_{i j}(x, y)
\end{aligned}
$$

Let
be the homogeneous decomposition of $f_{i}(x, y)$ so that $n_{i}=\operatorname{deg}\left(f_{i}(x, y)\right)$ and $g_{i j}(x, y)$ is homogeneous of degree j. Assume $a_{d-1}=a_{d-2}=\cdots$ $=a_{d-r}=0$ for some $r \geq 1$. Then

$$
g_{i n_{i}-1}(x, y)=g_{i i_{i}-2}(x, y)=\cdots=g_{i R_{i}}(x, y)=0
$$

where

$$
R_{i}=\left\{\begin{array}{cc}
n_{i}-r & \text { if } n_{i} \geq r \\
0 & \text { if } n_{i}<r .
\end{array}\right.
$$

Lemma 2. Let $f(x)=x^{d^{i}}+a_{d-1} x^{d-1}+\cdots$ $+a_{1} x+a_{0}$ be a monic polynomial over \boldsymbol{F}_{q} of degree d prime to q. Let N be the number of homogeneous linear factors of $f^{*}(x, y)=f(x)$ $-f(y)$ over $\boldsymbol{F}_{q^{r}}$ for some $r \geq 1$. Then, $f(x)=$ $g\left(x^{N}\right)$ for some $g(x) \in \boldsymbol{F}_{q}[x]$.

Lemma 3. Let d denote a positive divisor of $q-1$. Then

$$
\frac{x^{d-r}-y^{d-r}}{x^{d}-y^{d}}=\sum_{i=0}^{d-1} \frac{\mu^{-i(r-1)}-\mu^{i}}{d y^{r-1}\left(x-\mu^{i} y\right)}
$$

where μ denotes a d-th primitive root of unity in \boldsymbol{F}_{q}.

Proof. Considering the expressions as rational functions in x over the rational function field $\boldsymbol{F}_{q}(y)$ we obtain

$$
\frac{x^{d-r}-y^{d-r}}{x^{d}-y^{d}}=\sum_{i=0}^{d-1} \frac{A_{i}}{x-\mu^{i} y},
$$

for some $A_{0}, A_{1}, \ldots, A_{d-1}$ in $\boldsymbol{F}_{q}(y)$. Hence,

$$
\begin{gathered}
x^{d-r}-y^{d-r}=\sum_{i=0}^{d-1} \Pi_{j \neq i}\left(x-\mu^{i} y\right) A_{i}, \\
\left(\mu^{i} y\right)^{d-r}-y^{d-r}=\prod_{j \neq i}\left(\mu^{i} y-\mu^{j} y\right) A_{i},
\end{gathered}
$$

