The third-order factorable core of polynomials over finite fields

By Javier GOMEZ-CALDERON

Department of Mathematics, The Pennsylvania State University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1998)

Abstract: Let F_q denote the finite field of order q and characteristic p. For f(x) in $F_q[x]$, let $f^*(x,y)$ denote the substitution polynomial f(x)-f(y). In this paper we show that if $f(x)=x^d+a_{d-2}x^{d-2}+a_{d-3}x^{d-3}+\cdots+a_1x+a_0\in F_q[x]$ $(a_{d-2}a_{d-3}\neq 0)$ has degree dprime to q and $f^*(x, y)$ has at least one cubic irreducible factor, then

 $f(x) = G(x^4 + (4a_{d-2}/d)x^2 + (4a_{d-3}/d)x)$ for some $G(x) \in \mathbf{F}_a[x]$

 $f(x) = H((x^3 + (3a_{d-2}/d)x + 3a_{d-3}/d)^{r+1})$ for some $H(x) \in \mathbf{F}_q[x]$ where r denotes the number of irreducible cubic factors of $f^*(x, y)$ of the form $x^3 - Ty^3 +$ Ax + By + C.

Let F_q denote the finite field of order q and characteristic p. For f(x) in $\mathbf{F}_q[x]$, let $f^*(x, y)$ denote the substitution polynomial f(x) - f(y). The polynomial $f^*(x, y)$ has frequently been used in questions on the values set of f(x), see for example Wan [8], Dickson [4], Hayes [7], and Gomez-Calderon and Madden [6]. Recently in [2] and [3]. Cohen and in [1]. Acosta and Gomez-Calderon studied the linear and quadratic factors of $f^*(x, y)$. In this paper we consider the irreducible cubic factors of $f^*(x, y)$. We show that if $f(x) = x^d + a_{d-2} x^{d-2} + a_{d-3} x^{d-3} + \cdots + a_1 x$ $+a_0 \in F_q[x]$ $(a_{d-2}a_{d-3} \neq 0)$ has degree d prime to q and $f^*(x, y)$ has at least one cubic irreducible factor, then

 $f(x) = G(x^4 + (4a_{d-2}/d)x^2 + (4a_{d-3}/d)x)$ for some $G(x) \in \mathbf{F}_{a}[x]$ or

 $f(x) = H((x^{3} + (3a_{d-2}/d)x + 3a_{d-3}/d)^{r+1})$ for some $H(x) \in \mathbf{F}_{q}[x]$ where r denotes the number of irreducible cubic factors of $f^*(x, y)$ of the form $x^3 - Ty^3 + Ax + By + C$.

Now we will give a series of lemmas from which our main result, Theorem 7, will follow. Proofs for Lemmas 1 and 2 can be found in [5].

Lemma 1. Let $f(x) = x^d + a_{d-1}x^{d-1} + \cdots$ $+ a_1 x + a_0$ denote a monic polynomial over F_a of degree d prime to q. Let the irreducible factorization of $f^*(x, y) = f(x) - f(y)$ be given by

$$f^*(x, y) = \prod_{i=1}^{s} f_i(x, y).$$
Let
$$f_i(x, y) = \sum_{j=0}^{n_i} g_{ij}(x, y)$$

be the homogeneous decomposition of $f_i(x, y)$ so that $n_i = \deg(f_i(x, y))$ and $g_{ij}(x, y)$ is homogeneous of degree j. Assume $a_{d-1} = a_{d-2} = \cdots$ $= a_{d-r} = 0$ for some $r \ge 1$. Then

 $g_{in_{i-1}}(x, y) = g_{in_{i-2}}(x, y) = \cdots = g_{iR_{i}}(x, y) = 0$ where

$$R_i = \begin{cases} n_i - r & \text{if } n_i \ge r \\ 0 & \text{if } n_i < r. \end{cases}$$

Lemma 2. Let $f(x) = x^{d} + a_{d-1}x^{d-1} + \cdots$ $+ a_1 x + a_0$ be a monic polynomial over F_a of degree d prime to q. Let N be the number of homogeneous linear factors of $f^*(x, y) = f(x)$ -f(y) over F_{q^r} for some $r \ge 1$. Then, f(x) = $g(x^N)$ for some $g(x) \in \mathbf{F}_a[x]$.

Lemma 3. Let d denote a positive divisor of

$$\frac{x^{d-r}-y^{d-r}}{x^d-y^d} = \sum_{i=0}^{d-1} \frac{\mu^{-i(r-1)}-\mu^i}{dy^{r-1}(x-\mu^i y)}$$

where μ denotes a d-th primitive root of unity in \boldsymbol{F}_{q} .

Proof. Considering the expressions rational functions in x over the rational function field $F_q(y)$ we obtain

$$\frac{x^{d-r}-y^{d-r}}{x^d-y^d} = \sum_{i=0}^{d-1} \frac{A_i}{x-\mu^i y},$$
or some A_0, A_1, \dots, A_d in $F_2(y)$. Hen

for some
$$A_0$$
, A_1 ,..., A_{d-1} in $F_q(y)$. Hence,
$$x^{d-r}-y^{d-r}=\sum\limits_{i=0}^{d-1}\prod\limits_{j\neq i}(x-\mu^iy)A_i,$$

$$(\mu^{i}y)^{d-r} - y^{d-r} = \prod_{j \neq i} (\mu^{i}y - \mu^{j}y)A_{i},$$