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1. Introduction. Let f (a:) be a cubic
polynomial with rational integer coefficients,
which is monic and irreducible. Suppose that all
roots 0, 0’ and 0" of f(a) --0 are real, and put
K-Q (0). Denote by D the discriminant of
polynomial f(a:). Let o/ and E/ be the ring of in-
tegers and the group of units of K respectively.
Moreover we denote by E/ the subset of E/ con-
sisting of the units s with NIC/Qs 1. It is well
known by a theorem of Dirichlet [6] that there
exists a system of fundamental units {sl., sa} such
that

Ez {__+ 1} E/ and Ez (sl,
Our purpose is to determine totally real cubic
fields such that the system of fundamental units
can be given in the form {04- r, 04- s} for
some integers r, s. Note that we can reduce our
problem to the case that 0 is a unit in K (i.e., r-
0).

First, for the minimal polynomial f(a:) of 0
over Q, we can get the following"

Proposition 1. Suppose that s is a non-zero
integer and both 0 and 0 4-s are in E,. Then
there is an integer t such that

(a) if 0 and 0 4- s are in E;, then f(a)
x(x + s)(z + t) 1,

(b) if 0 and --0--s are in E/, then f(

It is easy to prove this proposition.
Conversely we should investigate whether

{0, 0 4- s} is a system of fundamental units. As
for (i), we can reduce to the case t--> 1, s _>
1 because of 0(0 + t) (0 + s) -. In this condi-

+
tion, Stender [:3] and Thomas [41 proved E/-
0, 0 4- s), but we will prove this in a different
way. As for (ii), there are only four cases s-

1, 2. The case (ii) s-- 1 was studied by
Watabe [5] completely.

Our main results are as follows"
Theorem 1 (Stender [31, Thomas [4]). In the

casef(x) x(x+ t)(z+s) l(s, t Z), if

D is positive, square free and t > 1, s > t + 1,
then E (0, 0 4- s) holds.

Theorem 2 (s 1). In the casef(:c)
z(:c 4- (t-- 1)x4- (-- t4-2)) l(t Z), if

Dy is positive and square free, then E/ (0,
0 4- 1) holds.

Theorem 3 (s 2). In the case f(:c) c
(za+ (t+2)x+ 2t-- 1) l(t Z), ifDz is
square free, then E (0, 0- 2) holds.

Theorem 4 (s 2). In the casef(:c)
x(x + (t-- 2)z-- 2t+ 1) l(t Z), if Dy
is positive, both of t 4- 1 and 4t 4- 8t- 23 are
square free and t 2 (rood3), then E/- (0,

0 4- 2) holds.
2. Preliminaries. We define a function S

from E, to Z by
1 2 s,,)a (s"S() --((s- s’) + (s’- + )

Moreover, define s/(K), and $1 (K) for t in
d(K) by

M(K) (e E;\(1)I S(z)is minimum),
+ n

$1(K) ( E\(q n Z) S(s) is minimum).
The following lemmas will be useful for the

proof of theorems.
Lemma 1 (Brunotte, Halter-Koch [2]). If 1

is in M (K) and sa is in $1(K), then (E; (,
sa))

_
4 holds.

Lemma 2 (Godwin [1]). For any t, , s in

E and integer m _> 2, we have
rn+l

S() < 9S("), S() < 9S(d), S() < 2

S(s182) < 3S(s)S(s2), 8(8-1) --< S(s) 2.
Lemma 3. In the conditions of Theorem 1,

it holds that
s(o(o + s)) <_ s(o) , s(o(o + s)) < s(o) .

Proof. We can easily prove Lemma 3 by
elementary calculation. [--]

Lemma 4. In the conditions of Theorem 1,
we have S(t) 12.

Proof. We have S() (t 4- s) a- 3st= ta


