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1. Introduction. Let f (x) be a cubic
polynomial with rational integer coefficients,
which is monic and irreducible. Suppose that all
roots 6, 8" and 6”7 of f(x) = O are real, and put
K =Q (6). Denote by D, the discriminant of
polynomial f(x). Let o, and Ex be the ring of in-
tegers and the group of units of K respectively.
Moreover we denote by E, the subset of E, con-
sisting of the units € with Ng,qe = 1. It is well
known by a theorem of Dirichlet [6] that there
exists a system of fundamental units {e,, &,} such
that

E.={% 1) X Eg and E; = {¢,, €.

Our purpose is to determine totally real cubic
fields such that the system of fundamental units
can be given in the form {8 + 7, 6 + s} for
some integers 7, s. Note that we can reduce our
problem to the case that @ is a unit in K (i.e., » =
0).

First, for the minimal polynomial f(x) of 6
over Q, we can get the following:

Proposition 1. Suppose that s is a non-zero
integer and both 6 and 6 + s are in Ey. Then
there is an integer f such that

(a) if 6 and 6 + s are in E4, then f(x) =

x(x+s)(x+0DH — 1.
(b) if & and — @ — s are in E5, then f(x)

=:c<x2+ (s+t)x+<st—%>)—1.

It is easy to prove this proposition.

Conversely we should investigate whether
{6, 6 + s} is a system of fundamental units. As
for (i), we can reduce to the case t=1,s =t +
1 because of (8 + H = (6 + s)™". In this condi-
tion, Stender [3] and Thomas [4] proved E; =
(@, 0 + s>, but we will prove this in a different
way. As for (ii), there are only four cases s =
+ 1, = 2. The case (ii) s =1 was studied by
Watabe [5] completely.

Our main results are as follows:

Theorem 1 (Stender [3], Thomas [4]). In the

case flx) =x(x+ O (x+s) —1(s, t € D), if
D, is positive, square free and t =1, s = ¢t+ 1,
then E5 = <60, 6 + s> holds.

Theorem 2 (s = — 1). In the case f(x) =
(2P + -1+ (—t+2) —1¢e€Z),if
D, is positive and square free, then Ex = <6, —
6 + 1> holds.

Theorem 3 (s = 2). In the case f(z) = x
(2°+ (t+2)x+2t—1) — 1€ Z),if D, is
square free, then E; = <6, — 6 — 2> holds.

Theorem 4 (s = — 2). In the case f(x) =
(P + (t—2)x—2t+1)—1G€Z), if D,
is positive, both of # + 1 and 4t* + 8t — 23 are
square free and ¢ # 2 (mod3), then E; = <6,
— 6 + 2> holds.

2. Preliminaries.
from Ey to Z by

S© = 3l — ) + € — ) + (& — %

Moreover, define o (K), and B, (K) for ¢, in
A(K) by

A(K) = {e € E;\1} | S(e) is minimum},

8. (K) = {e € Ex\ e} ; n € Z}| S(o) is minimum}.

The following lemmas will be useful for the
proof of theorems.

Lemma 1 (Brunotte, Halter-Koch [2]). If ¢,
is in # (K) and ¢, is in B, (K), then (Eg : <&y,
g,) < 4 holds.

Lemma 2 (Godwin [1]). For any ¢, ¢, &, in
E; and integer m = 2, we have -

S’ < 9S(E), S’ < 9S(E), S©)" <=
S(eye,) < 3S(e))S(ey), S < S

Lemma 3. In the conditions of Theorem 1,
it holds that
S6(0 + 5)) < SO)7, SB%(6 + s)) < S()°.
Proof. We can easily prove Lemma 3 by
elementary calculation. ]
Lemma 4. In the conditions of Theorem 1,
we have S(0) = 12.
Proof. We have S(8) = (t+ s)* — 3st=1+*

We define a function S

S(E™,



