On Bougerol and Dufresne's identities for exponential Brownian functionals

By Hiroyuki Matsumoto*) and Marc Yor**)

(Communicated by Heisuke Hironaka, m. J. A., Dec. 14,1998)

1. Introduction. Let $B=\left\{B_{t}\right\}_{t} \geq_{0}$ be a onedimensional standard Brownian motion starting from 0. To $\left\{X_{t}^{(\nu)}=B_{t}+\nu t\right\}_{t \geqq 0}$, a Brownian motion with constant drift ν, we associate the exponential additive functional

$$
A_{t}^{(\nu)}=A_{t}^{(\nu)}(B)=\int_{0}^{t} \exp \left(2\left(B_{s}+\nu s\right)\right) d s, t \geqq 0
$$

This Wiener functional plays an important role in a number of domains, mathematical finance (Yor [13], Leblanc [11]), diffusion processes in random environments (Comtet-Monthus [4], Comtet-Monthus-Yor [5], Kawazu-Tanaka [10]), probabilistic studies related to Laplacians on hyperbolic spaces (Gruet [8], Ikeda-Matsumoto [9]) and so on. The readers can find more related topics and references in [16].

We denote A_{t} for $A_{t}^{(0)}$. The joint law of (A_{t}, B_{t}) is fairly complicated (Yor [13]), although it is quite tractable. But Bougerol's identity ([3]),
(1.1) $\sinh \left(B_{t}\right) \stackrel{\text { (aw) }}{=} \gamma_{A_{t}}$ for any fixed $t>0$ for another Brownian motion $\left\{\gamma_{s}\right\}_{s} \geqq_{0}$ independent of B, makes it easy to calculate the Mellin transform of the probability law of A_{t}. A simple proof of (1.1), as a consequence of Itô's formula, has been provided in Alili-Dufresne-Yor [1] who have shown the identity in law of the processes $\left\{\exp \left(B_{t}\right) \int_{0}^{t} \exp \left(-B_{s}\right) d \gamma_{s}\right\}_{t} \geqq_{0}$ and $\left\{\sinh \left(B_{t}\right)\right\}_{t} \geq_{0}$.

Another approach to the joint probability law of (A_{t}, B_{t}) is found in Alili-Gruet [2] and Ikeda-Matsumoto [9]. These authors have shown independently the following formula. Let ϕ be a function defined by
(1.2) $\phi(x, z)=\sqrt{2} e^{x / 2}(\cosh z-\cosh x)^{1 / 2}, z \geqq|x|$.

Then it holds that

[^0]\[

$$
\begin{align*}
& E\left[\exp \left(-u^{2} A_{t} / 2\right) \mid B_{t}=x\right] \frac{1}{\sqrt{2 \pi t}} \exp \left(-x^{2} / 2 t\right) \tag{1.3}\\
& \quad=\int_{|x|}^{\infty} \frac{z}{\sqrt{2 \pi t^{3}}} \exp \left(-z^{2} / 2 t\right) J_{0}(u \phi(x, z)) d z,
\end{align*}
$$
\]

for every $t>0$, where $E[\mid]$ is the conditional expectation with respect to the Wiener measure and J_{0} is the Bessel function of the first kind of order 0 .

Moreover recall that $J_{0}(\xi)$ is the characteristic function of a symmetrized arcsine random variable $2 Z-1$, where Z is a usual arcsine variable whose probability density is $(\pi$. $\sqrt{z(1-z)})^{-1}, 0<z<1$. Then, following [2], we can show
$\stackrel{\text { can show }}{(1.4)}\left(\gamma_{A_{t}}, B_{t}\right) \stackrel{\text { (law) }}{=}\left((2 Z-1) \phi\left(B_{t}, \sqrt{R_{t}^{2}+B_{t}^{2}}\right), B_{t}\right)$
as a consequence of (1.3), where $R=\left\{R_{t}\right\}_{t \geqq 0}$ is a two-dimensional Bessel process starting from 0 independent of B and Z. We will also see below that (1.4) is equivalent to $\left(\gamma_{A_{t}}, B_{t}\right) \stackrel{\text { (law) }}{=}\left((2 Z-1) \phi\left(B_{t},\left|B_{t}\right|+L_{t}\right), B_{t}\right)$ for the local time L_{t} of B at 0 . See Lemmas 1 and 2 in Section 3 for details.

The origin of the present note is the following integral moments formula which has been obtained by Ikeda-Matsumoto [9] by using a result in Yor [13]: for every positive integer n and every $x \in \mathbf{R}$, it holds that

$$
\begin{equation*}
E\left[\left(A_{t}\right)^{n} \mid B_{t}=x\right] \frac{1}{\sqrt{2 \pi t}} \exp \left(-x^{2} / 2 t\right) \tag{1.5}
\end{equation*}
$$

$$
=\frac{\exp (n x)}{\sqrt{2 \pi t^{3}} n!} \int_{|x|}^{\infty} b \exp \left(-b^{2} / 2 t\right)(\cosh b-\cosh x)^{n} d b
$$

Recall that, letting e be a standard exponential random variable whose density function is $\exp (-x), x \geqq 0$, we have $E\left[\mathbf{e}^{n}\right]=n!$ and

$$
\begin{aligned}
& P(\sqrt{2 \mathbf{e} t}>b|\sqrt{2 \mathbf{e} t}>|a|) \\
& =\exp \left(-a^{2} / 2 t\right) \int_{b}^{\infty} \frac{c}{t} \exp \left(-c^{2} / 2 t\right) d c, b>|a| .
\end{aligned}
$$

Then (1.5) is equivalent to
(1.6) $E\left[\left(e^{-a} \mathrm{e} A_{t}\right)^{n} \mid B_{t}=a\right]$

$$
=E\left[(\cosh \sqrt{2 \mathbf{e} t}-\cosh a)^{n}|\sqrt{2 \mathbf{e} t}>|a|],\right.
$$

where e is assumed to be independent of B. Although Carleman's sufficient condition for the

[^0]: *) School of Informatics and Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601.
 **) Laboratoire de Probabilitiés, Université Pierre et Marie Curie, 4, Place Jussieu, Tour 56, F-75252 Paris Cedex 05, France.

