On smooth projective threefolds with non-trivial surjective endomorphisms

By Eiichi SAto *) and Yoshio Fujimoto **)
(Communicated by Heisuke HIronaka, m. J. A., Dec. 14, 1998)

The main purpose of this paper is to announce the structure of non-singular projective threefold X with a surjective morphism $f: X \rightarrow X$ onto itself, which is not an isomorphism.
We call it a non-trivial surjective endomorphism of X.
The details will be published elsewhere.
Lemma 1. Let $f: X \rightarrow X$ be a surjective morphism from a non-singular projective variety X onto itself. Then
(1) f is a finite morphism.
(2) If $\kappa(X) \geq 0, f$ is a finite étale morphism.
(3) If f is a finite étale morphism, then $\chi\left(\mathscr{O}_{X}\right)=$ $\operatorname{deg}(f) \cdot \chi\left(\mathscr{O}_{X}\right)$.
The structure of algebraic surfaces with a non-negative Kodaira dimension, which admit a non-trivial surjective endomorphism, are fairly simple. They are minimal and by taking s finite étale covering, isomorphic to an abelian surface or a direct product of an elliptic curve and a smooth curve of genus ≥ 2. In this note, we are mainly concerned with the case where X is a smooth projective threefold with non-negative Kodaira dimension $\kappa(X)$. Contrary to the case of algebraic surfaces, they are not necessarily minimal, but similar results also hold in this case. We cannot drop the assumption that $f: X$ $\rightarrow X$ is a morphism. There are infinitely many examples which admit a generically finite rational map $f: X \cdots \cdots$ of degree ≥ 2, eg. a Kummer surface, or a relatively minimal elliptic surface with a global section.

Notations. In the present note, by a smooth projective n-fold X, we mean a non-singular projective manifold of dimension n defined over \boldsymbol{C}. K_{X} : the canonical bundle of X $\kappa(X)$: the Kodaira dimension of X

[^0]$\chi\left(\mathscr{O}_{X}\right)$: the Euler-Poincaré characteristic of the structure sheaf \mathscr{O}_{X}
$N_{1}(X):=(\{1-$ cycles on $X\}) / \equiv \otimes_{Z} \boldsymbol{R}$, where \equiv means a numerical equivalence.
$N E(X):=$ the smallest convex cone in $N_{1}(X)$ containing all effective 1 - cycles.
$\overline{N E}(X):=$ Kleiman-Mori cone of X, ie. the closure of $N E(X)$ in $N_{1}(X)$ for the metric topology.
$\rho(X):=\operatorname{dim}_{R} N_{1}(X)$, the Picard number of X.
The next propositions, which are direct consequences of Mori theory [1], play a key role in this paper.

Proposition 2. Let $f: Y \rightarrow X$ be a finite, étale covering between smooth projective n-folds with $\rho(X)=\rho(Y)$.
Then $f^{*}: N_{1}(X) \rightarrow N_{1}(Y)$ (resp. $f_{*}: N_{1}(Y) \rightarrow$ $\left.N_{1}(X)\right)$ is isomorphic and $f^{*} \overline{N E}(X)=\overline{N E}(Y)$ (resp. $f_{*} \overline{N E}(Y)=\overline{N E}(X)$).
Moreover, if the canonical bundle K_{X} of X (hence $\left.K_{Y} \simeq f^{*} K_{X}\right)$ is not nef, there is a one to one correspondence between
\{extremal rays on $\overline{N E}(X)\}$ and \{extremal rays on $\overline{N E}(Y)$ \} under the above isomorphisms f^{*} and f_{*}.

Proposition 3. Let X, Y be non-singular projective threefolds with non-negative Kodaira dimensions. Assume that X and Y have the same Picard number and there exists a finite étale covering $f: Y \rightarrow X$, which is not an isomorphism.

If the canonical bundle K_{X} of X (hence $K_{Y} \simeq$ $f^{*}\left(K_{X}\right)$) is not nef, then Mori's extremal contractions of X (resp. Y), Cont $_{R}: X \rightarrow X^{\prime}$ (resp. Cont $_{\tilde{R}}: Y \rightarrow Y^{\prime}$), associated to each extremal ray R of $\overline{N E}(X)$ (resp. \tilde{R} of $\overline{N E}(Y)$), is a birational divisorial contraction, which is (inverse of) the blow-up along a smooth curve C (resp. \tilde{C}) on $X^{\prime}\left(\right.$ resp. $\left.Y^{\prime}\right)$. Moreover C (resp. $\left.\tilde{C}\right)$ is not \boldsymbol{P}^{1} and if $f^{*}(R)=\tilde{R}$, the following commutative diagram holds.

[^0]: *) Graduate School of Mathematics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581.
 **) Department of Mathematics, Faculty of Education, Gifu University, 1-1 Yanagido, Gifu 5011193.

