On smooth projective threefolds with non-trivial surjective endomorphisms

By Eiichi SATO^{*)} and Yoshio FUJIMOTO^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., Dec. 14, 1998)

The main purpose of this paper is to announce the structure of non-singular projective threefold X with a surjective morphism $f: X \rightarrow X$ onto itself, which is not an isomorphism.

We call it a non-trivial surjective endomorphism of X.

The details will be published elsewhere.

Lemma 1. Let $f: X \rightarrow X$ be a surjective morphism from a non-singular projective variety X onto itself. Then

- (1) f is a finite morphism.
- (2) If $\kappa(X) \ge 0$, f is a finite étale morphism.
- (3) If f is a finite étale morphism, then $\chi(\mathcal{O}_X) = \deg(f) \cdot \chi(\mathcal{O}_X)$.

The structure of algebraic surfaces with a non-negative Kodaira dimension, which admit a non-trivial surjective endomorphism, are fairly simple. They are minimal and by taking s finite étale covering, isomorphic to an abelian surface or a direct product of an elliptic curve and a smooth curve of genus ≥ 2 . In this note, we are mainly concerned with the case where X is a smooth projective threefold with non-negative Kodaira dimension $\kappa(X)$. Contrary to the case of algebraic surfaces, they are not necessarily minimal, but similar results also hold in this case. We cannot drop the assumption that f: X $\rightarrow X$ is a morphism. There are infinitely many examples which admit a generically finite rational map $f: X \longrightarrow X$ of degree ≥ 2 , eg. a Kummer surface, or a relatively minimal elliptic surface with a global section.

Notations. In the present note, by a smooth projective *n*-fold X, we mean a non-singular projective manifold of dimension *n* defined over *C*. K_X : the canonical bundle of X $\kappa(X)$: the Kodaira dimension of X $\chi(\mathcal{O}_X)$: the Euler-Poincaré characteristic of the structure sheaf \mathcal{O}_X

- $N_1(X) := (\{1 \text{-cycles on } X\}) / = \bigotimes_Z R$, where \equiv means a numerical equivalence.
- NE(X): = the smallest convex cone in $N_1(X)$ containing all effective 1 - cycles.
- NE(X): = Kleiman-Mori cone of X, ie. the closure of NE(X) in $N_1(X)$ for the metric topology.

 $\rho(X) := \dim_{\mathbb{R}} N_1(X)$, the Picard number of X.

The next propositions, which are direct consequences of Mori theory [1], play a key role in this paper.

Proposition 2. Let $f: Y \to X$ be a finite, étale covering between smooth projective *n*-folds with $\rho(X) = \rho(Y)$.

Then $f^*: N_1(X) \to N_1(Y)$ (resp. $f_*: N_1(Y) \to N_1(X)$) is isomorphic and $f^* \overline{NE}(X) = \overline{NE}(Y)$

 $(resp. f_*NE(Y) = NE(X)).$

Moreover, if the canonical bundle K_X of X (hence $K_Y \simeq f^*K_X$) is not nef, there is a one to one correspondence between

{extremal rays on NE(X)} and {extremal rays on $\overline{NE}(Y)$ } under the above isomorphisms f^* and f_* .

Proposition 3. Let X, Y be non-singular projective threefolds with non-negative Kodaira dimensions. Assume that X and Y have the same Picard number and there exists a finite étale covering $f: Y \to X$, which is not an isomorphism. If the canonical bundle K_X of X (hence $K_Y \cong$ $f^*(K_X)$) is not nef, then Mori's extremal contractions of X (resp. Y), $\operatorname{Cont}_R: X \to X'$ (resp. $\operatorname{Cont}_{\widetilde{R}}: Y \to Y'$), associated to each extremal ray

R of $\overline{NE}(X)$ (resp. \tilde{R} of NE(Y)), is a birational divisorial contraction, which is (inverse of) the blow-up along a smooth curve *C* (resp. \tilde{C}) on *X'* (resp. *Y'*). Moreover *C* (resp. \tilde{C}) is not P^1 and if $f^*(R) = \tilde{R}$, the following commutative diagram holds.

^{*)} Graduate School of Mathematics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581.

^{**)} Department of Mathematics, Faculty of Education, Gifu University, 1-1 Yanagido, Gifu 501-1193.