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1. Introduction and notations. Throughout
this paper, we denote by N the set of positive
rational integers, and put Ny = N U {0}. Z will
mean as usual the set of rational integers. For a
square-free D € N, the real quadratic field
Q (/D) will be denoted by k, its class number by
h, and its fundamental unit > 1 by ¢, = (t + u
VD)/2. The norm map from k to @ will be de-
noted by N. The class number two problem re-
quires to determine the set of all D for which 4,
= 2 under certain conditions. This problem was
solved by Katayama [2,3] with one possible ex-
ception for the conditions Nep, = — 1,1 < u
< 200; by Mollin and Williams [5] for k of Ex-
tended Richaud-Degert type (i.e. with D = m’+r
where 4m = 0 (modr)), also with one possible
exception; and by Taya and Terai [7] for k of
Narrow Richaud-Degert type (i.e. with » = = 1 or
+ 4).

In this paper, we shall consider this problem
for the case Nep, = 1, 1 < # < 100 and solve it
with one possible exception (see Theorem below).

2. Lemmas and propositions. We begin by
citing two known results as Lemmas 1,2 (The let-
ters N, D, ¢, t, w will always keep the mean-
ings explained above. For a real number x,
[x] means as usual the greatest integer < x).

Lemma 1 (Yokoi [11]). Suppose Ne, = 1.
Then the following conditions for n, v € N, w
€ Z determine these numbers uniquely, and we
have n = [¢/u’], w= D — 2tn + u’n’:

t=u2n+v, 1)2—4=wuz,v<u2
D= u’n® + 2on + w.

For our real quadratic field k = Q(/D), we
denote by d, its discriminant (i.e. d, is D or 4D
according as D = 1 (mod4) or = 2, 3 (mod4)),
by x, Kronecker character of k and by L(1, x,)
the Dirichlet L-function with this character.

Lemma 2 (Tatuzawa [6]). Suppose d, =
max(e"%, ¢''?) for a real number @ with 0 < «
< 1/2. Then we have

0.655

LA, x» >

k
with one possible exception of k.
The following lemma will be used immediate-
ly afterward:
Lemma 3. We have ¢, < 2uy/D.

Proof. This follows easily from ¢=
VDu* £ 4 < w/D + 2. Q E. D.

Let D be a square-free number € N for
which Ne, = 1 and #, v, w be the numbers € Z
determined by the conditions in Lemma 1. From
Lemmas 2,3, we can deduce the following

Proposition 1. D, n, v, w being as above,
there exists a real number v (%) determined by #,
such that h, > 2 follows from # = v (%), with
one possible exception of D.

Proof. From Lemma 2 and the well-known
Dirichlet’s class number formula, we get

RA 0.655 yd,d;'"
hy = 2loge,, L, xo > 2loge,, Y

for y =2 11.2 and d, = ¢’ with one possible ex-
ception of k. Since ¢, < 2uyD < 2uy/d, by Lem-
ma 3, we have _—
h, > 0.655d, .
y(logd, + 2logu + 2log2)
y being fixed, the right-hand side is a monotone
increasing function of d,. Thus we can replace
here d, by ¢’ to obtain
> 0.655d2 ™!
k7 y(y + 2logu + 2log2)

Let us denote by f, (y) the right-hand side of
this inequality. For any fixed u, f, (y) tends to
© as y— ., So there exists a real number
c(u) = 11.2 satisfying f,(c(#)) = 2. Thus, solv-
ing the inequality

< D=un’+2m+w<d,
for #, one can find a real number v (#) such that
h, > f,(c(w) = 2 for n = v(u). Q. E. D.

In fact, we may take v (x) = y4 + wet™ /
u’. Moreover, we can choose ¢ (%) < 16.5 for 1




