Class number two problem for real quadratic fields with fundamental units with the positive norm

By Fitnat KaraAlí and Hülya İŞCAN
Department of Mathematics, Trakya University, 22030 Edirne, Turkey
(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1998)

1. Introduction and notations. Throughout this paper, we denote by N the set of positive rational integers, and put $\mathrm{N}_{0}=\mathrm{N} \cup\{0\} . \mathrm{Z}$ will mean as usual the set of rational integers. For a square-free $D \in \mathrm{~N}$, the real quadratic field $Q(\sqrt{D})$ will be denoted by k, its class number by h_{k} and its fundamental unit >1 by $\varepsilon_{D}=(t+u$ $\sqrt{D}) / 2$. The norm map from k to Q will be denoted by N. The class number two problem requires to determine the set of all D for which h_{k} $=2$ under certain conditions. This problem was solved by Katayama $[2,3]$ with one possible exception for the conditions $N \varepsilon_{D}=-1,1 \leq u$ ≤ 200; by Mollin and Williams [5] for k of Extended Richaud-Degert type (i.e. with $D=m^{2}+r$ where $4 m \equiv 0(\bmod r)$), also with one possible exception; and by Taya and Terai [7] for k of Narrow Richaud-Degert type (i.e. with $r= \pm 1$ or $\pm 4)$.

In this paper, we shall consider this problem for the case $N \varepsilon_{D}=1,1 \leq u \leq 100$ and solve it with one possible exception (see Theorem below).
2. Lemmas and propositions. We begin by citing two known results as Lemmas 1,2 (The letters $N, D, \varepsilon_{D}, t, u$ will always keep the meanings explained above. For a real number x, $[x]$ means as usual the greatest integer $\leq x$).

Lemma 1 (Yokoi [11]). Suppose $N \varepsilon_{D}=1$. Then the following conditions for $n, v \in \mathrm{~N}_{0}, w$ $\in Z$ determine these numbers uniquely, and we have $n=\left[t / u^{2}\right], w=D-2 t n+u^{2} n^{2}$:
$t=u^{2} n+v, v^{2}-4=w u^{2}, v<u^{2}$
$D=u^{2} n^{2}+2 v n+w$.
For our real quadratic field $k=Q(\sqrt{D})$, we denote by d_{k} its discriminant (i.e. d_{k} is D or $4 D$ according as $D \equiv 1(\bmod 4)$ or $\equiv 2,3(\bmod 4)$), by χ_{k} Kronecker character of k and by $L\left(1, \chi_{k}\right)$ the Dirichlet L-function with this character.

Lemma 2 (Tatuzawa [6]). Suppose $d_{k} \geq$ $\max \left(e^{1 / \alpha}, e^{11.2}\right)$ for a real number α with $0<\alpha$ $<1 / 2$. Then we have

$$
L\left(1, \chi_{k}\right)>\frac{0.655 \alpha}{d_{k}^{\alpha}}
$$

with one possible exception of k.
The following lemma will be used immediately afterward:

Lemma 3. We have $\varepsilon_{D}<2 u \sqrt{D}$.
Proof. This follows easily from $t=$ $\sqrt{D u^{2} \pm 4}<u \sqrt{D}+2 . \quad$ Q. E. D.

Let D be a square-free number $\in \mathrm{N}$ for which $N \varepsilon_{D}=1$ and n, v, w be the numbers $\in Z$ determined by the conditions in Lemma 1. From Lemmas 2,3, we can deduce the following

Proposition 1. D, n, v, w being as above, there exists a real number $v(u)$ determined by u, such that $h_{k}>2$ follows from $n \geq v(u)$, with one possible exception of D.

Proof. From Lemma 2 and the well-known Dirichlet's class number formula, we get

$$
h_{k}=\frac{\sqrt{d_{k}}}{2 \log \varepsilon_{D}} L\left(1, \chi_{k}\right)>\frac{0.655}{2 \log \varepsilon_{D}} \frac{\sqrt{d_{k}} d_{k}^{-1 / y}}{y}
$$

for $y \geq 11.2$ and $d_{k} \geq e^{y}$, with one possible exception of k. Since $\varepsilon_{D}<2 u \sqrt{D} \leq 2 u \sqrt{d_{k}}$ by Lemma 3, we have

$$
h_{k}>\frac{0.655 d_{k}^{1 / 2-1 / y}}{y\left(\log d_{k}+2 \log u+2 \log 2\right)}
$$

y being fixed, the right-hand side is a monotone increasing function of d_{k}. Thus we can replace here d_{k} by e^{y} to obtain

$$
h_{k}>\frac{0.655 d_{k}^{y / 2-1}}{y(y+2 \log u+2 \log 2)}
$$

Let us denote by $f_{u}(y)$ the right-hand side of this inequality. For any fixed $u, f_{u}(y)$ tends to ∞ as $y \rightarrow \infty$. So there exists a real number $c(u) \geq 11.2$ satisfying $f_{u}(c(u)) \geq 2$. Thus, solving the inequality

$$
e^{c(u)} \leq D=u^{2} n^{2}+2 v n+w \leq d_{k}
$$

for n, one can find a real number $v(u)$ such that $h_{k}>f_{u}(c(u)) \geq 2$ for $n \geq v(u) . \quad$ Q. E. D.

In fact, we may take $v(u) \geq \sqrt{4+u^{2} e^{c(u)}}$, u^{2}. Moreover, we can choose $c(u)<16.5$ for 1

