Gröbner deformations of regular holonomic systems

By Mutsumi SAITO,^{*)} Bernd STURMFELS,^{**)} and Nobuki TAKAYAMA^{***)}

(Communicated by Heisuke HIRONAKA, M. J. A., Sept. 14, 1998)

1. Torus-fixed ideals in the Weyl algebra. This is a research announcement of results in the first part of our monograph [15]. Let $D = C \langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \rangle$ denote the Weyl algebra with complex coefficients. Thus D is the free associative C-algebra on 2n generators modulo the relations $x_i x_j = x_j x_i, \partial_i \partial_j = \partial_j \partial_i, x_i \partial_j = \partial_j x_i - \delta_{ij}$. Left ideals in D are called D-ideals. They represent systems of linear partial differential equations with polynomial coefficients. The torus $(C^*)^n$ acts on the Weyl algebra by $\partial_i \mapsto t_i \partial_i$ and $x_i \mapsto t_i^{-1} x_i$ for $(t_1, \ldots, t_n) \in (C^*)^n$. We abbreviate $\theta_i = x_i \partial_i$. The set of elements in D which are fixed by $(C^*)^n$ equals the commutative polynomial subring $C[\theta] = C[\theta_1, \ldots, \theta_n]$.

Lemma 1.1. A *D*-ideal *J* is torus-fixed if and only if *J* is generated by (finitely many) elements of the form $x^a \cdot p(\theta) \cdot \partial^b$ where $a, b \in N^n$ and $p(\theta) \in C[\theta]$.

Each $f \in D$ is written uniquely as a finite sum $f = \sum_{a,b \in \mathbb{N}^n} c_{ab} x^a \partial^b$ with $c_{ab} \in C$. Fix $u, v \in \mathbb{R}^n$ with $u + v \ge 0$. Then $\lim_{(u,v)} (f) \in D$ is the subsum of all terms $c_{ab} x^a \partial^b$ for which $u \cdot a + v \cdot b$ is maximal. For a *D*-ideal *I* we define the *initial ideal* $\lim_{(u,v)} (I)$ to be the *C*-vector space spanned by $\{\lim_{(u,v)} (f) : f \in I\}$. If u + v > 0then $\lim_{(u,v)} (I)$ is generally not a *D*-ideal; it is an ideal in the commutative polynomial ring gr(D) $= C[x, \xi] = C[x_1, \ldots, x_n, \xi_1, \ldots, \xi_n]$. Generators for the initial ideal can be computed by the Weyl algebra version of Buchberger's Gröbner basis algorithm; see e.g. [3] and [6] for early treatments and [13] for a precise introduction and recent applications. If u + v = 0 then the initial ideal is a *D*-ideal. For $w \in \mathbb{R}^n$ we call $in_{(-w,w)}(I)$ a *Gröbner* deformation of *I*. Specifically, if $w \in \mathbb{Z}^n$ then the *D*-ideal $in_{(-w,w)}(I)$ is regarded as the limit of *I* under the one-parameter subgroup of $(\mathbb{C}^*)^n$ defined by w.

Lemma 1.2. For generic $w \in \mathbb{R}^n$, the initial D-ideal $in_{(-w,w)}(I)$ is torus-fixed.

Let $D^{\pm} := C\langle x_1^{\pm 1}, \ldots, x_n^{\pm 1}, \partial_1, \ldots, \partial_n \rangle$ be the ring of differential operators on $(C^*)^n$. For a D-ideal I define the commutative polynomial ideal $\tilde{I} := D^{\pm}I \cap C[\theta]$.

Proposition 1.3. If J is a torus-fixed D-ideal then $\tilde{J} \subset C[\theta]$ is generated by $p(\theta - b) \cdot \prod_{i=1}^{n} \prod_{j=1}^{b_i} (\theta_i + 1 - j)$ where $x^a \cdot p(\theta) \cdot \partial^b$ runs over a generating set of J.

2. Holonomic rank under Gröbner deformations. Abbreviate $e := (1, 1, ..., 1) \in \mathbb{R}^n$. The ideal $in_{(0,e)}(I)$ in $\mathbb{C}[x, \xi]$ is called the *char*acteristic ideal of the *D*-ideal *I*. The Fundamental Theorem of Algebraic Analysis ([5],[12],[14]) states that each minimal prime of the characteristic ideal $in_{(0,e)}(I)$ has dimension $\geq n$. If $in_{(0,e)}(I)$ has dimension *n* then *I* is holonomic. In this case the following vector space dimension is finite and is called the holonomic rank of *I*:

(2.1) $rank(I) = \dim_{C(x)}(C(x)[\xi]/C(x)[\xi] \cdot in_{(0,e)}(I)).$ Here $C(x) = C(x_1, \ldots, x_n)$. The holonomic rank equals the dimension of the *C*-vector space of holomorphic solutions to *I* at any point outside the singular locus.

Theorem 2.1. Let I be a holonomic D-ideal and $w \in \mathbb{R}^n$. Then $in_{(-w,w)}(I)$ is holonomic and (2.2) $rank(in_{(-w,w)}(I)) \leq rank(I)$.

Our proof of Theorem 2.1 is based on a walk in the Gröbner fan GF(I) as defined in [1]. This fan decomposes the closed half space $\{u + v \ge 0\}$ of \mathbf{R}^{2n} into finitely many convex polyhedral cones, one for each initial monomial ideal $\ln_{(u,v)}(I) \subset C[x, \xi]$.

Let \mathfrak{D} be the sheaf of algebraic differential operators on \mathbb{C}^n . A holonomic *D*-ideal *I* is called

^{*)} Department of Mathematics, Hokkaido University, Sapporo, 060-0810.

^{**)} Department of Mathematics, University of California, Berkeley, CA 94720, U.S.A.; and Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502.

^{***)} Department of Mathematics, Kobe University, Kobe, 657-8501.