Interacting Brownian motions with measurable potentials

By Hirofumi OSADA

Graduate School of Mathematical Sciences, The University of Tokyo (Communicated by Kiyosi ITÔ, M. J. A., Jan. 12, 1998)

1. Introduction. We construct (unlabeled) interacting Brownian motions, so-called infinite dimensional Wiener processes with interaction, by using Dirichlet form theory.

(Labeled) interacting Brownian motions are infinitely dimensional diffusion processes with state space $(\mathbf{R}^d)^N$ given by the following SDE;

(1.1)
$$dX_t^i = dB_t^i - \sum_{j=1, j \neq i}^{\infty} \frac{1}{2} \nabla \Phi(X_t^i - X_t^j) dt$$

(1 \le i < \infty)

where B_t^i are independent Brownian motion on \mathbf{R}^d . When $\boldsymbol{\Phi} \in C_0^3(\mathbf{R}^d)$, this equation was solved by Lang [3], [4]. (see [1], [5], [8], [11], [12] for further development). The Θ -valued diffusion process associated with (1.1) (unlabeled interacting Brownian motion) is

$$E_t = \sum_{i=1}^{\infty} \delta_{X_t^i} (\delta_a \text{ is the delta measure at } a).$$

Diffusion processes $\{P_{\theta}\}_{\theta \in \Theta}$ obtained in Corollary 1.3 below is corresponds to Ξ_t . We refer to Theorem 3 in [7] with Remark (3,4) after that for the precise meaning of *correspondence* and related open problems.

We assume interacting potential $\boldsymbol{\Phi}$ is super stable and lower regular in the sense of Ruelle, and there exists a upper semicontinuous function $\boldsymbol{\tilde{\Phi}}$ that are regular in the sense of Ruelle and dominates $\boldsymbol{\Phi}$ from above. We remark $\boldsymbol{\Phi}$ itself is not necessarily upper semicontinuous; $\boldsymbol{\Phi}$ needs no regularity more than measurability. We henceforth generalize results in [7] and [13].

Let Θ be the set of all locally finite configurations on \mathbf{R}^{d} . Here a configuration θ is a Radon measure of the form $\theta = \sum_{i} \delta_{xi}$, where $\{x^{i}\}$ is a finite or infinite sequence in \mathbf{R}^{d} with no cluster points. We endow Θ with the vague topology; Θ is a Polish space with this topology.

Let $\boldsymbol{\Phi}: \mathbf{R}^d \to \mathbf{R} \cup \{\infty\}$ be a measurable function such that $\boldsymbol{\Phi}(x) = \boldsymbol{\Phi}(-x)$. We assume: $(\boldsymbol{\Phi}.1) \ \boldsymbol{\Phi}$ is super stable in the sense of Ruelle. (see [9] and [10]).

 $(\Phi.2)$ Φ is lower regular in the sense of Ruelle;

there exist a positive, decreasing function $\varphi : \mathbf{R}^+ \rightarrow \mathbf{R}^+$ satisfying

$$\int_{R^+} \varphi(t) t^{d-1} dt < \infty,$$

$$\Phi(x) \ge -\varphi(|x|) \text{ for all } x \in \mathbf{R}^d.$$

 $(\Phi.3)$ There exists a upper semicontinuous function $\tilde{\Phi}: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ and a constant $\mathbb{R} > 0$ such that

$$\begin{split} \varPhi(x) &\leq \tilde{\varPhi}(x) \text{ for all } x \in \mathbb{R}^d, \\ \tilde{\varPhi}(x) &\leq \varphi(|x|) \text{ for all } |x| \geq R, \\ \tilde{\varPhi}(x) &= \infty \text{ if and only if } \varPhi(x) = \infty. \end{split}$$
Here φ is same as $(\varPhi(2))$.

We remark by $(\Phi.1) \Phi$ is bounded from below. By $(\Phi.1) - (\Phi.3)$ for each z > 0 there exist (grand canonical) Gibbs measures μ with pair potential Φ and activity z ([10]). The definition of Gibbs measure will be given in Section 2.

We consider a symmetric bilinear form $\mathscr E$ on \varTheta ;

 $\mathscr{E}(f, g) = \int_{g} D[f, g] d\mu.$ Here D[f, g] is given by

$$D[f, g](\theta) = \frac{1}{2} \sum_{i} \nabla_{i} \hat{f}(x) \cdot \nabla_{i} \hat{g}(x).$$

Here $\nabla_i = (\frac{\partial}{\partial_{x_{i_k}}})_{1 \le k \le d}$, and \cdot means the inner product on \mathbf{R}^d . \hat{f} and \hat{g} in the right hand side are permutation invariant functions given by $f(\theta) =$ $\hat{f}(x)$ and $g(\theta) = \hat{g}(x)$, where $x = (x^i)$ is such that $\theta = \sum_i \delta_{x^i}$. Bilinear map D[f, g] is defined on $\mathcal{D}_{\infty}^{loc}$, the space of local, smooth functions on Θ , defined in Section 2. Let

 $\mathcal{D} = \{f \in \mathcal{D}_{\infty}^{loc.}; \&(f, f) < \infty, \|f\|_{L^{2}(\Theta, \mu)} < \infty\}.$ The purpose of this paper is to prove $(\&, \mathcal{D})$ is closable on $L^{2}(\Theta, \mu)$.

Theorem. 1.1. Assume $(\Phi.1) - (\Phi.3)$. Let μ be a Gibbs measure with potential Φ . Then $(\mathcal{E}, \mathcal{D}_{\infty})$ is closable on $L^{2}(\Theta, \mu)$.

Remark 1.1. In the previous work [7] we proved this result under more restrictive assumptions (Φ .1), (Φ .2) and (Φ .3'), (Φ .4') below: (Φ .3') Φ is tempered in the sense of Ruelle; there exist a decreasing function $\varphi : \mathbf{R}^+ \to \mathbf{R}^+$ and a constant \mathbf{R}_1 such that