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The purpose of this note is to prove.
Theorem. There are infinitely many elliptic

curves with rank --> 4 over Q, which have 3 dis-
tinct non-trivial rational points of order 2.

1. We begin by proving.
Proposition 1. Let K be any field of charac-

teristic 4= 2, A,B,CK*=K-- {0},B24=4AC
and A-1C (K*) 2. Suppose, moreover, that the
elliptic curve

4
t’y Ax + Bx + C

has a K-point P- (d, e), d, e K. Then has
3 distinct non-trivial K-points of order 2.

Proof. As A, B, C K*, B :/: 4AC and
A-1C (K*) e, we can find a, b, c K* such
that A a, B 2ab + c, C ab so that can

be represented by

Define the birational transformations

Ze(x, Y) x-- d’ (x-- d)
e(u v) (2eu + (4abd + 2cd + 4ad3)

2ev + 2ad 2ab, 4eu + 3e(4abd + 2cd +
4ad3)u + 2e(2ab + c + 6ad)u + 4ade
(4abd + 2cd + 4ad) v- 4eZuv)

and put p pO ZP. Then the computation shows
that e is transformed by p(x, y) (X, Y)
into the Weierstrass model

" Yz X(X + 4ab) (X + 4ab + c)
which has 3 distinct non-trivial K-points of
order 2"(0,0) (-- 4ab, 0), (-- 4ab- c, 0).

Q.E.D.
2. Now let K-- Q(t), t being a variable.
We shall construct an elliptic curve to over

K with 5 K-points Po,..., P4.
Let (a, a2, a3, a4) (2t + 90,6t + 150,10t

+ 234,18t + 410) and consider the polynomial
4

f (z) H (z- ) K[z] of 4th degree. There
i=1

exist uniquely g(z), r(z) K[z] of degrees 2,1,
respectively, such that f(z) (g(z)) 2- r(z). As

r(z) is linear polynomial, xr((x + )2)a with

fi K* is a polynomial of 4th degree over K
which has only terms of degrees 4, 2, 0. For fi
45(2t + 45), this polynomial becomes Aox+
Box + Co where

Ao (t + 45t + 499)(3t + 135t + 1502)
(3t + 135t + 1546),

Bo- (13374t6 + 1805490t + 101365376t4

+ 3029355090t + 50827314206t +
453946682520t + 1686020339144),

Co- 2025(2t + 45)z(t + 45t + 499)(3t +
135t + 1502)(3tz + 135t + 1546).

Observe that Ao, Bo, Co K*, B :/: 4AoCo,
Ao-1Co (K*)2. Using the relation r(z)

4

(g(z))- II (z- c), we see that the elliptic
i=1

curve

eo’Y -Aox4+Box+ Co
has the following 5 K-points:

Po- (5, 10(27t4 + 2430t + 81901t +
1225170t + 6862992)),

P1 (-- 5, 10(27t4 + 2430t + 81901t" +
1225170t + 6862992)),

P (9, 18(15t4 + 1350t + 45429t +
677430t + 3777176)),

P- (15, 30(9t4 + 810t + 27163t +
402210t + 2218808)),

P4 (45, 90(3t4 + 270t + 9309t +
145530t + 867008)).
As Ao, Bo, and Co satisfy the conditions for

A, B, and C in Proposition 1 and Po o, So has
3 distinct, non-trivial K-points of order 2.

Now we prove.
Proposition 2. K-rank of so is at least 4.

Proof Let o be the Weierstrass model of
so obtained by ,% and Q Ceo(P), 1,...,
4. o and so have of course the same rank. Let ff

be the specialization t 1. a(o) is a Q-curve
with 4 Q-points (Q) R, i 1,..., 4, and it

suffices to show that R1,..., R4 are independent


