On the Polynomial Hamiltonian Structure Associated with the L(1, q + 2; q) Type

By Hiroyuki KAWAMUKO

Department of Mathematical Sciences, University of Tokyo (Communicated by Kiyosi ITÔ, M. J. A., Oct. 13, 1997)

1. Introduction. In the paper [3], we considered the differential equation

(1.1)
$$\frac{d}{dx}Y = \frac{1}{x}\mathscr{A}(x, t)Y, \ \mathscr{A}(x, t): = \sum_{k=0}^{g+1}\mathscr{A}_k x^k$$

which satisfies the conditions:

(i) \mathcal{A}_k are 2×2 matrices,

- (ii) the eigenvalues of \mathcal{A}_0 are distinct up to additive integers,
- (iii) the eigenvalues of \mathcal{A}_{q+1} are distinct.

This equation can be reduced to the equation

(1.2)
$$\frac{d}{dx^2}y + p_1(x, t)\frac{d}{dx}y + p_2(x, t)y = 0,$$

which satisfies the three conditions:

(iv) The Riemann scheme of (1,1) is

(vi) $x = \lambda_k$ (k = 1, ..., g) are non-logarithmic singular points.

The equation (1.2) is called L(1, g + 2; g) type. Let μ_k $(k = 1, \ldots, g)$ be the residue of p_2

(x, t) at $x = \lambda_k$ and let

$$h_j:=\frac{\partial^{g-j}}{\partial x^{g-j}}\left(xp_2-\sum_{k=1}^g\frac{\lambda_k\mu_k}{x-\lambda_k}\right)\Big|_{x=0}.$$

By the assumtion (vi), we remark that these h_i are uniquely determined as rational functions in $\lambda_k, \mu_k, t_k (k = 1, \ldots, g).$

Using these notations λ_k , μ_k and h_k , we state that the holonomic deformation of the linear equation (1.2) is governed by the Hamiltonian system:

$$\frac{\partial \lambda_i}{\partial t_j} = \frac{\partial \tilde{K}_j}{\partial \mu_i}, \frac{\partial \mu_i}{\partial t_j} = \frac{\partial \tilde{K}_j}{\partial \lambda_i} (i, j = 1, \dots, g),$$

where the Hamiltonian K_i are

It is known that, if q = 1 the holonomic deformation of (1.2) is governed by the fourth Painlevé equation. So the Hamiltonian system $(\lambda, \mu,$ \tilde{K} , t) is a extension of the fourth Painlevé equation.

Now, we assume that g < 8. The purpose of this paper is to transform the Hamiltonian system $(\lambda, \mu, \tilde{K}, t)$ into the Hamiltonian system (q, t) p, H, ξ) with the conditions:

(C₁)
$$H_j$$
 ($j = 1, ..., g$) are polynomial in q_k , p_k ($k = 1, ..., g$),

$$(C_2) \quad \frac{\partial H_k}{\partial \xi_j} = \frac{\partial H_j}{\partial \xi_k}.$$

We will state that if $\kappa_{\infty} = 0$, a special solution of this system is written by the multivalue Hermite function.

By the condition (C_2) , we can introduce the function $\tau_{\rm IV}^{(g)}$ as follows:

$$\frac{\partial}{\partial \xi_k} \log \tau_{\mathrm{IV}}^{(g)} = H_k.$$

In [7], Okamoto defined the τ function associate with the fourth Painlevé transcendental function. This function is equivalent to $\tau_{\rm IV}^{(1)}$.

2. Polynomial Hamiltonian structure.

Theorem 2.1. Put σ_k , ρ_k $(k = 1, \ldots, g)$ as follows:

 σ_k = the k-th elementary symmetric function of $\lambda_1, \lambda_2, \ldots, \lambda_g$,

$$\rho_{k} = (-1)^{k-1} \sum_{l=1}^{g} \lambda_{l}^{g-k} \mu_{l} \prod_{\substack{j=1\\ j \neq 1}} (\lambda_{l} - \lambda_{j})^{-1}$$