On the Polynomial Hamiltonian Structure Associated with the $L(1, g+2 ; g)$ Type

By Hiroyuki Kawamuko
Department of Mathematical Sciences, University of Tokyo
(Communicated by Kiyosi ITÔ, M. J. A., Oct. 13, 1997)

1. Introduction. In the paper [3], we considered the differential equation

$$
\begin{equation*}
\frac{d}{d x} Y=\frac{1}{x} \mathscr{A}(x, t) Y, \mathscr{A}(x, t):=\sum_{k=0}^{g+1} \mathscr{A}_{k} x^{\mathrm{k}} \tag{1.1}
\end{equation*}
$$

which satisfies the conditions:
(i) \mathscr{A}_{k} are 2×2 matrices,
(ii) the eigenvalues of \mathscr{A}_{0} are distinct up to additive integers,
(iii) the eigenvalues of \mathscr{A}_{g+1} are distinct. This equation can be reduced to the equation (1.2) $\frac{d^{2}}{d x^{2}} y+p_{1}(x, t) \frac{d}{d x} y+p_{2}(x, t) y=0$, which satisfies the three conditions:
(iv) The Riemann scheme of $(1,1)$ is

$$
\left\{\begin{array}{ccccc}
x=0 & x=\lambda_{1} & \cdots & x=\lambda_{g} \\
0 & 0 & \cdots & 0 \\
\kappa_{0} & 2 & \cdots & 2 \\
& \overbrace{\text { 0 }}^{0} \begin{array}{cccccc}
& 0 & 0 & \cdots & 0 & -\kappa_{\infty} \\
& \frac{1}{g+1} & \frac{t_{g}}{g} & \frac{t_{g-1}}{g-1} & \cdots & t_{1}
\end{array} \kappa_{\infty}-\kappa_{0}+1
\end{array}\right\},
$$

(v) κ_{0} and κ_{∞} are not integer,
(vi) $x=\lambda_{k}(k=1, \ldots, g)$ are non-logarithmic singular points.
The equation (1.2) is called $L(1, g+2 ; g)$ type.
Let $\mu_{k}(k=1, \ldots, g)$ be the residue of p_{2} (x, t) at $x=\lambda_{k}$ and let

$$
h_{j}:=\left.\frac{\partial^{g-j}}{\partial x^{g-j}}\left(x p_{2}-\sum_{k=1}^{g} \frac{\lambda_{k} \mu_{k}}{x-\lambda_{k}}\right)\right|_{x=0}
$$

By the assumtion (vi), we remark that these h_{j} are uniquely determined as rational functions in $\lambda_{k}, \mu_{k}, t_{k}(k=1, \ldots, g)$.

Using these notations λ_{k}, μ_{k} and h_{k}, we state that the holonomic deformation of the linear equation (1.2) is governed by the Hamiltonian system :

$$
\frac{\partial \lambda_{i}}{\partial t_{j}}=\frac{\partial \tilde{K}_{j}}{\partial \mu_{i}}, \frac{\partial \mu_{i}}{\partial t_{j}}=\frac{\partial \tilde{K}_{j}}{\partial \lambda_{i}}(i, j=1, \ldots, g)
$$

where the Hamiltonian \tilde{K}_{j} are

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\tilde{K}_{1} \\
\tilde{K}_{2} \\
\vdots \\
\vdots \\
\tilde{K}_{g}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & & & & 0 \\
& 2 & & & \\
& & \ddots & & \\
& & & \ddots & \\
0 & & & g
\end{array}\right]^{-1}} \\
\\
\\
\end{array}\left[\begin{array}{ccccc}
1 & & & & 0 \\
t_{g} & 1 & & & \\
\vdots & t_{g} & 1 & & \\
t_{3} & & \ddots & \ddots & \\
t_{2} & t_{3} & \cdots & t_{g} & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
h_{1} \\
h_{2} \\
\vdots \\
\vdots \\
h_{g}
\end{array}\right] .\right.
$$

It is known that, if $g=1$ the holonomic deformation of (1.2) is governed by the fourth Painlevé equation. So the Hamiltonian system (λ, μ, $\tilde{K}, t)$ is a extension of the fourth Painlevé equation.

Now, we assume that $g<8$. The purpose of this paper is to transform the Hamiltonian system $(\lambda, \mu, \tilde{K}, t)$ into the Hamiltonian system (q, $p, H, \xi)$ with the conditions:
$\left(C_{1}\right) \quad H_{j}(j=1, \ldots, g)$ are polynomial in $q_{k}, p_{k}(k$ $=1, \ldots, g$),
$\left(C_{2}\right) \quad \frac{\partial H_{k}}{\partial \xi_{j}}=\frac{\partial H_{j}}{\partial \xi_{k}}$.
We will state that if $\kappa_{\infty}=0$, a special solution of this system is written by the multivalue Hermite function.

By the condition $\left(C_{2}\right)$, we can introduce the function $\tau_{\mathrm{IV}}^{(g)}$ as follows:

$$
\frac{\partial}{\partial \xi_{k}} \log \tau_{\mathrm{IV}}^{(g)}=H_{k}
$$

In [7], Okamoto defined the τ function associate with the fourth Painleve transcendental function. This function is equivalent to $\tau_{\mathrm{IV}}^{(1)}$.

2. Polynomial Hamiltonian structure.

Theorem 2.1. Put $\sigma_{k}, \rho_{k}(k=1, \ldots, g)$ as follows:
$\sigma_{k}=$ the k-th elementary symmetric function of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{g}$,

$$
\left.\rho_{k}=(-1)^{k-1} \sum_{l=1}^{g} \lambda_{l}^{g-k} \mu_{\substack{j=1 \\ j \neq 1}} \prod_{l}-\lambda_{j}\right)^{-1}
$$

