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Abstraet

Every normal surface singularity has a unique minimal resolution. On the

contrary, a minimal terminalization of higher dimensional singularity is not unique. In this
note, we prove that there exists a correspondence between minimal terminalizations of a
toric canonical singularity and radicals of initial ideals of term order represented by weight

vector.

1. Introduction. Every mnormal surface
singularity has a uniquely determined good re-
solution called minimal resolution, which plays
an inportant role in the studying of surface sing-
ularities. For singularities of higher dimension,
Minimal Model Conjecture tells us that there
should exist a minimal terminalization.

Definition. A minimal terminalization of a
germ of singularities X is a projective birational
morphism 7 : Y— X which satisfies the following
two conditions:

(1) Y has only Q-factorial terminal singular-

ities.

2) Ky ~ 1Ky + X a,E,, a,<0.

We say that w is a minimal resolution or a
minimal Q-factorization if Y is smooth or has
only @-factorial canonical singularities, respec-
tively.

It is known that three dimensional singular-
ities and toric singularities have a minimal termi-
nalization. Minimal terminalizations have many
nice properties like as minimal resolutions of
surface singularities. In dimension three or high-
er, however, a minimal terminalization is not uni-
que. In this note, we prove that there exists a
correspondence between minimal terminalizations
of a toric canonical singularity and radicals of in-
itial ideals of term order represented by weight
vector.

Definition. Let R = Clx,, - * ', x,] be a
polynomial ring in # variables. Fix w = (w,,* " -,
w,) € R”. For any polynomial f = X ¢,x“, we
define the initial form in,(f) to be the sum of all
terms such that the inner product w * «; is max-
imal. The initial tdeal attached to a given ideal [
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is defined to be the ideal generated by all the ini-
tial forms:
in,(I) := <in,(f): f € I.

We notice that this ideal is not necessarily
to be a monomial ideal.

Our main theorem is the following.

Theorem 1. Let X be a d-dimensional toric
singularity. Then there exists an
homogeneous binomial ideal I of Clx,, - - -, x,]
which satisfies the following four conditions:

(1) The ideal I defines the toric variety defined

by the dual fan of the defining of X .

(2) There exists a omne-to-one correspondence
between the minimal Q-factorizations and
the radicals of initial ideals of weight w in
I such that Rad(in,(I)) is a monomial
ideal.

(3) Rad(in,(I)) corresponds to the minimal
terminalization of and only if Rad(in, ([))
does not contain (1 < ¢ < n).

(4) If X is a Gorenstein canonical singularity,
Rad(in, (1)) corresponds to the minimal
resolution if and only if Rad(in,(I)) =
in, (I).

2. Proof of theorem. Let X = SpecClo”

N M]. Assume that the cone ¢ is generated by
a,,* ', a,. Because X has only canonical sing-
ularity, by [5, 1.11], there exists a linear function
h such that k(a) = (1 < i < m) and k(b)) = »
for b € 0 N N, where 7 is a positive integer. Let
A be a d — 1-dimensional integral polygon such
that

canonical

A:={r<€o|hx) = 1.
We define a regular triangulation of integral
polytope.

Definition. Let A be a d — 1-dimensional



