Remark on Upper Bounds for $L(1,\chi)^{\dagger}$

By Shin-ichi KATAYAMA

Department of Mathematical Sciences, Tokushima University (Communicated by Shokichi IYANAGA, M. J. A., April 12, 1996)

§1. Let k be a real quadratic field of discriminant Δ . Let χ be the non-trivial Dirichlet character of k and $L(s, \chi)$ the L-function attached to χ . In [2], Hua obtained the following upper bound for $L(1, \chi)$:

$$L(1, \chi) \leq \frac{1}{2} \log \Delta + 1.$$

It was shown in [7] that, in the case $\Delta \equiv 1 \pmod{4}$

$$L(1, \chi) \leq \frac{1}{2} \log \Delta + \gamma - \frac{1}{2}$$

where $\gamma = 0.57721...$ is Euler's constant. Let $\varepsilon(>1)$ be the fundamental unit of k and h be the class number of k. From the class number formula, the above upper bounds yield respectively the following inequalities

$$h\log\varepsilon \leq \frac{\sqrt{\Delta}}{4}\log\Delta + \frac{\sqrt{\Delta}}{2},$$
$$h\log\varepsilon \leq \frac{\sqrt{\Delta}}{4}\log\Delta + \sqrt{\Delta}\Big(\frac{\gamma}{2} - \frac{1}{4}\Big).$$

We denote $\frac{\sqrt{\Delta}}{4} \log \Delta + \frac{\sqrt{\Delta}}{2}$ by $H(\Delta)$ and $\frac{\sqrt{\Delta}}{4}$

 $\log \Delta + \sqrt{\Delta} \left(\frac{\gamma}{2} - \frac{1}{4}\right)$ by $W(\Delta)$, respectively. In the following, we restrict ourselves to the case when Δ is a prime p of the form 4n + 1. In this case, T. Ono has obtained the following inequal-

ity in his paper [6]:

$$\varepsilon^{h} \leq \frac{2}{\sqrt{p}} (1+\omega) \left(1+\frac{\omega}{2}\right) \cdots \left(1+\frac{\omega}{n}\right)$$

$$= \frac{2}{\sqrt{p}} \binom{n+\omega}{n},$$

where $\omega = \frac{1 + \sqrt{p}}{2}$ and $\binom{n + \omega}{n}$ is the generalized binomial coefficient.

Putting $O(p) = \log\left(\frac{2}{\sqrt{p}} \binom{n+\omega}{n}\right)$, we have an upper bound

$$h\log\varepsilon < O(p) = \log 2 - \frac{1}{2}\log p + \sum_{k=1}^{n}\log\left(1 + \frac{\omega}{k}\right).$$

In this paper, we shall show O(p) < H(p) for any $p \ge 5$ and O(p) < W(p) for $5 \le p \le 661$ and O(p) > W(p) for $p \ge 673$. Since it is obvious that W(p) < H(p) for any $p \ge 5$, we have the following theorem.

Theorem. With the above notation, we have

O(p) < W(p) < H(p) for the cases $5 \le p \le 661$,

W(p) < O(p) < H(p) for the cases $p \ge 673$.

§2. Since the gamma function $\Gamma(x)$ is logarithmically convex (see [1]), one can easily show the following lemmas 1, 2 for $0 < s \leq 1$, using the functional equation $\Gamma(x + 1) = x\Gamma(x)$:

Lemma 1. For any natural number n and any s > 0, we have the inequality

$$\frac{n^s}{\Gamma(1+s)} \le \binom{n+s}{n}.$$

Lemma 2. For any $0 < s \leq n \ (\in \mathbb{N})$, we have

$$\binom{n+s}{n} \leq \frac{2(2n)^s}{\Gamma(1+s)}.$$

ing the fact $n = \frac{p-1}{4} > \frac{1+\sqrt{p}}{2} = \omega$

for $p \geq 13$, and the above lemmas, we have

Lemma 3. For any prime $p = 4n + 1 \ge 13$,

$$\frac{n^{\omega}}{\Gamma(1+\omega)} \le \binom{n+\omega}{n} \le \frac{2(2n)^{\omega}}{\Gamma(1+\omega)}$$

From Stirling's formula, one knows

Combini

$$\frac{e^{\omega-\frac{1}{12\omega}}}{\sqrt{2\pi}\omega^{\omega+\frac{1}{2}}} < \frac{1}{\Gamma(1+\omega)} < \frac{e^{\omega}}{\sqrt{2\pi}\omega^{\omega+\frac{1}{2}}}.$$

From the right hand side inequality in Lemma 3 and the right hand side inequality of this formula, one sees

$$O(p) < \log\left(\frac{4(2n)^{\omega}e^{\omega}}{\sqrt{2\pi p}\omega^{\omega+\frac{1}{2}}}\right) < H(p) + A(p),$$

where
$$A(p) = \frac{1}{2} (1 + \log 16 - \log \pi - \log p)$$
.

Since A(p) is a monotone decreasing function and A(17) = -0.102... < 0, we have O(p) < H(p) for $p \ge 17$. In the cases p = 5 and 13, a direct

^{*)} Dedicated to Professor Hiroaki Hijikata on his 60th birthday.