On $L(1, \chi)$ and Class Number Formula for the Real Quadratic Fields

By Ming-Guang LeU
Department of Mathematics, National Central University, Republic of China (Communicated by Shokichi IYANAGA, M. J. A., March 12, 1996)

1. Introduction. Let k be a positive integer greater than 1 , and let $\chi(n)$ be a real primitive character modulo k. The series

$$
L(1, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n}
$$

can be divided into groups of k consecutive terms. Let v be any nonnegative integer, j an integer, $0 \leq j \leq k-1$, and let

$$
T(v, j, \chi)=\sum_{n=j+1}^{j+k} \frac{\chi(v k+n)}{v k+n}=\sum_{n=j+1}^{j+k} \frac{\chi(n)}{v k+n} .
$$

Then $L(1, \chi)=\sum_{n=1}^{j} \frac{\chi(n)}{n}+\sum_{v=0}^{\infty} T(v, j, \chi)$.
We remind the reader that a real primitive character $(\bmod k)$ exists only when either k or $-k$ is a fundamental discriminant, and that the character is then given by

$$
\chi(n)=\left(\frac{d}{n}\right),
$$

where d is k or $-k$, and the symbol is that of Kronecker (see, for example, Ayoub [2] for the definition of a Kronecker character).

In [5], Davenport proved the following theorem:

Theorem (H. Davenport). If $\chi(-1)=1$, then $T(v, 0, \chi)>0$ for all v and k. If $\chi(-1)=$ -1 , then $T(0,0, \chi)>0$ for all k, and $T(v, 0, \chi)$ >0 if $v>v(k):$ but for any integer $r \geq 1$ there exist values of k for which

$$
\begin{gathered}
T(1,0, \chi)<0, T(2,0, \chi)<0, \ldots \\
T(r, 0, \chi)<0
\end{gathered}
$$

In [9], Leu and Li derived the following result about $T\left(v,\left[\frac{k}{2}\right], \chi\right)$.

Theorem A. If $\chi(-1)=1$, then $T\left(v,\left[\frac{k}{2}\right], \chi\right)$ <0 for all v and k, where $[x]$ denotes the greatest integer $\leq x$.

[^0]Combining the results of Davenport [5] and Theorem A of Leu and Li, we have the following interesting inequalities.

Theorem B. If $\chi(-1)=1$, then

$$
\begin{equation*}
\sum_{n=1}^{k} \frac{\chi(n)}{n}<L(1, \chi)<\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n} \tag{1.1}
\end{equation*}
$$

In section 2 , we will prove that $T(v, j, \chi)$ $\neq 0$ for prime integer $k>2$, nonnegative integer v and $j=0,1,2, \ldots, k-1$. In section 3 , we will derive the inequalities for $L(1, \chi)$ on even real primitive character modulo k :

$$
\begin{equation*}
\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}-\frac{\ln k}{\sqrt{k}}<L(1, \chi)<\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n} \tag{1.2}
\end{equation*}
$$

On the other hand, using Siegel-Tatuzawa's lower bound for $L(1, \chi)$ (See [15] and [13]) and Louboutin's upper bound for $L(1, \chi)$ (See [10], [3], [14] and [12]), one also has inequalities for $L(1, \chi)$ on even real primitive character modulo k (with one possible exception coming from applying Siegel-Tatuzawa's theorem [15]):

$$
\begin{align*}
\frac{0.655}{4} \frac{1}{k^{1 / 4}}<L(1, \chi) & \leq \frac{1}{2} \ln k \tag{1.3}\\
& +\frac{2+\gamma-\ln (4 \pi)}{2}
\end{align*}
$$

where $k \geq e^{11.2}$ and γ denotes Euler's constant. From the facts $\lim _{k \rightarrow \infty} \frac{\ln k}{\sqrt{k}}=0$ and $\lim _{k \rightarrow \infty}\left(\frac{1}{2} \ln k\right.$ $\left.-\frac{0.655}{4} k^{-\frac{1}{4}}\right)=\infty$, it is clear that the inequalities (1.2) provides much better estimate for $L(1, \chi)$ than the inequalities (1.3) does. In these days, computing facilities are highly developed, the inequalities (1.2) may be used to investigate varied problems related to $L(1, \chi)$. In section 4 , we will derive a class number formula for the real quadratic fields:

> - If positive integer k is not of the form $m^{2}+4(m \in \mathrm{~N})$, then

$$
h=\left[\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]
$$

[^0]: 1991 Mathematics Subject Classification. Primary: 11M20, 11R11, 11R29.

 This research is supported in part by the National Science Council of the Republic of China.

