On $L(1,\chi)$ and Class Number Formula for the Real Quadratic Fields

By Ming-Guang LEU

Department of Mathematics, National Central University, Republic of China (Communicated by Shokichi IYANAGA, M. J. A., March 12, 1996)

1. Introduction. Let k be a positive integer greater than 1, and let $\chi(n)$ be a real primitive character modulo k. The series

$$L(1, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n}$$

can be divided into groups of k consecutive terms. Let v be any nonnegative integer, j an integer, $0 \le j \le k-1$, and let

$$T(v, j, \chi) = \sum_{n=j+1}^{j+k} \frac{\chi(vk+n)}{vk+n} = \sum_{n=j+1}^{j+k} \frac{\chi(n)}{vk+n}.$$
Then $L(1, \chi) = \sum_{n=1}^{j} \frac{\chi(n)}{n} + \sum_{v=0}^{\infty} T(v, j, \chi).$

We remind the reader that a real primitive character \pmod{k} exists only when either k or -k is a fundamental discriminant, and that the character is then given by

$$\chi(n) = \left(\frac{d}{n}\right),\,$$

where d is k or -k, and the symbol is that of Kronecker (see, for example, Ayoub [2] for the definition of a Kronecker character).

In [5], Davenport proved the following theorem:

Theorem (H. Davenport). If $\chi(-1) = 1$, then $T(v, 0, \chi) > 0$ for all v and k. If $\chi(-1) = -1$, then $T(0,0,\chi) > 0$ for all k, and $T(v, 0, \chi) > 0$ if v > v(k): but for any integer $r \ge 1$ there exist values of k for which

$$T(1,0, \chi) < 0, T(2,0, \chi) < 0, ...,$$

 $T(r, 0, \chi) < 0.$

In [9], Leu and Li derived the following result about $T(v, \left[\frac{k}{2}\right], \chi)$.

Theorem A. If $\chi(-1) = 1$, then $T(v, \left\lfloor \frac{k}{2} \right\rfloor, \chi)$ < 0 for all v and k, where [x] denotes the greatest integer $\leq x$.

Combining the results of Davenport [5] and Theorem A of Leu and Li, we have the following interesting inequalities.

Theorem B. If $\chi(-1) = 1$, then

$$(1.1) \qquad \sum_{n=1}^{k} \frac{\chi(n)}{n} < L(1, \chi) < \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}.$$

In section 2, we will prove that $T(v, j, \chi) \neq 0$ for prime integer k > 2, nonnegative integer v and $j = 0,1,2,\ldots, k-1$. In section 3, we will derive the inequalities for $L(1, \chi)$ on even real primitive character modulo k:

$$(1.2) \quad \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n} - \frac{\ln k}{\sqrt{k}} < L(1, \chi) < \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}.$$

On the other hand, using Siegel-Tatuzawa's lower bound for $L(1, \chi)$ (See [15] and [13]) and Louboutin's upper bound for $L(1, \chi)$ (See [10], [3], [14] and [12]), one also has inequalities for $L(1, \chi)$ on even real primitive character modulo k (with one possible exception coming from applying Siegel-Tatuzawa's theorem [15]):

(1.3)
$$\frac{0.655}{4} \frac{1}{k^{1/4}} < L(1, \chi) \le \frac{1}{2} \ln k + \frac{2 + \gamma - \ln(4\pi)}{2}$$

where $k \geq e^{11.2}$ and γ denotes Euler's constant. From the facts $\lim_{k \to \infty} \frac{\ln k}{\sqrt{k}} = 0$ and $\lim_{k \to \infty} \left(\frac{1}{2} \ln k\right)$

$$-\frac{0.655}{4}k^{-\frac{1}{4}}$$
 = ∞ , it is clear that the inequali-

ties (1.2) provides much better estimate for $L(1, \chi)$ than the inequalities (1.3) does. In these days, computing facilities are highly developed, the inequalities (1.2) may be used to investigate varied problems related to $L(1, \chi)$. In section 4, we will derive a class number formula for the real quadratic fields:

• If positive integer k is not of the form $m^2 + 4$ ($m \in \mathbb{N}$), then

$$h = \left[\frac{\sqrt{k}}{2\ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right],$$

¹⁹⁹¹ Mathematics Subject Classification. Primary: 11M20, 11R11, 11R29.

This research is supported in part by the National Science Council of the Republic of China.