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A Form of Classical Picard Principle
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Let H, be the fundamental harmonic function
on the Euclidean space R’ of dimension d 2 2,
ie. Hy(x) =log(1/|z|) and H,(x) =1/| z|**
(d=3), where |z|= L, 12" DY is the
length of a vector z = (z', -+ -, %) € R*. We
denote by B? the unit ball lz] <1in R’ and by
B: the punctured unit ball 0 < |z| <1 in R"
Then we have the following

Theorem A. If u = 0 is harmonic in By (d
2 2), then u = cH, + v, where ¢ 2 0 is a con-
stant and v is harmowic on B,

This result has been called the Picard princi-
ple by many authors since Bouligand [4] and then
Brelot [5] first used the term because of the pap-
ers of Picard [10,11] (see also Stozek [13]); it is
also referred to as the Bocher theorem by Helms
[6], Wermer [14], and Axler et al [2], etc. since
the result is proved by Bocher [3] 20 years ear-
lier than Picard. Anyway this is one of the re-
sults in the potential theory much talked about
from various view points: thousands of different
proofs have been given to the result; the result is
also discussed in the frame of wider degenerate
harmonicity such as one given by the Schrodin-
ger equations with potentials having singularities
at the origin (cf. e.g. Pinsky [12]); the Martin
theory is of course another extension. Recently
the following result of Anandam and Damlakhi
[1] called our attention:

Theorem B. Suppose u is harmonic on Bj
such that u(@ 2 o(z|™) as |x|—0 with
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s = 1. Then u = cH, + v, where ¢ is a constant
and v is harmowic on BZ.

This is of course superficially a generaliza-
tion of Theorem A for d = 2. Anandam and Dam-
lakhi [1] proved this in complex analytic way and
thus the restriction to the dimension d = 2 seems
to be essential in their proof. The purpose of this
note is to remark that the Fourier expansion
method, one of the most standard ways of pro-
ving Theorem A, also instantly proves not only
Theorem B but also its generalization to higher
dimensions. Namely, we will prove the following

1. Theorem. Suppose u is harmonic in B:
such that u(@) Z o(x|™) as |xz|—0 with
s=d— 1 Then u = cH; + v, where ¢ is a con-
stant and v is harmonic on B®.

Proof. We use the polar coordinates x = 7§
for points £ € R*\ {0}, where r = | x| > 0 and
g=z/|z| € S = 6B’ We choose and then
fix an orthonormal basis {S,;:7=1,--+, N(n)}
of the subspace of all spherical harmonics of de-
gree n of LZ(Sd_l, do), where do is the area ele-
ment on S*~. Then {S,;:7=1,---,Nn);n=
0,1, - - -} is a complete orthonormal system of
Lz(Sd_l, do). We have, as the special case of the
addition theorem, = o S,;(&)°= N@)/06, on
S* ' (n=0,1,--), where 0, is the surface area
o(S*™") of ' Here N(0) = 1 and N(n) = 2n
+d—2)Fn+d—2)/'(n+1)I'(d—1) for
n=1,2,---. Then we have the following Fourier
expansion of #(7£) in terms of spherical harmo-
nics {S,,}:

N (n)
@ w0t = 3 (2 2,5,(9) " + byH,»

n=0 ‘j=1
o0 N(n)
+ 3 (2 6,8,@) r,

n=1 ‘j=1
where H,(») = H,(x) with |x| = r and a,,; and
b, ¢G=1,---,Nwm);n=0,1, - ) are con-
stants. Here the series on the right hand side of
(2) converges uniformly in &€ € S for any fix-
ed 0 <7< 1. Multiply yN()/ao, £ S,;(&) =0
(n=1) to both sides of u(7€) = o(r™°) and



