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A Form of Classical Picard Principle
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Let Ha be the fundamental harmonic function
on the Euclidean space Ra

of dimension d

_
2,

i.e. H2(x) log(i/Ix[) and Ha(x) 1/Ixla-2

(d 3) where Ix[ (a 1/2=llx [) is the
length of a vector x: (x, "’, x R. We
denote by Ba

the unit ball [x] < 1 in Ra
and by

B the punctured unit ball 0 <Ix[ < 1 in Ra.
Then we have the following

dTheorem A. If u 0 is harmonic in Bo (d
2), then u cHa + v, where c 0 is a con-

stant and v is harmonic on B.
This result has been called the Picard princi-

ple by many authors since Bouligand [4] and then
Brelot [5] first used the term because of the pap-
ers of Picard [10,11] (see also Stbzek [13]); it is
also referred to as the Bbcher theorem by Helms
[6], Wermer [14], and Axler et al. [2], etc. since
the result is proved by BScher [3] 20 years ear-
lier than Picard. Anyway this is one of the re-
sults in the potential theory much talked about
from various view points: thousands of different
proofs have been given to the result; the result is
also discussed in the frame of wider degenerate
harmonicity such as one given by the Schr0din-
ger equations with potentials having singularities
at the origin (cf. e.g. Pinsky [12]); the Martin
theory is of course another extension. Recently
the following result of Anandam and Damlakhi
[1] called our attention"

Theorem B. Suppose u is harmonic on B3
such that u(x) o(I x[-S) as x 0 with
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1. Then u cH + v, where c is a constant

Band v is harmonic on
This is of course superficially a generaliza-

tion of Theorem A for d 2. Anandam and Dam-
lakhi [1] proved this in complex analytic way and
thus the restriction to the dimension d 2 seems
to be essential in their proof. The purpose of this
note is to remark that the Fourier expansion
method, one of the most standard ways of pro-
ving Theorem A, also instantly proves not only
Theorem B but also its generalization to higher
dimensions. Namely, we will prove the following

d
1. Theorem. Suppose u is harmonic in Bo

such that u(X) O(I xl -s) --as x 0 with
s - d- 1. Then u- cHa + v, where c is a con-
stant and

Proof We use the polar coordinates x
for points x Ra\ {0}, where r-- xl > 0 and
--x/I x Sa-- Ba. We choose and then
fix an orthonormal basis (Sn’j 1,..., N(n)}
of the subspace of all spherical harmonics of de-
gree n of L2(Sa-, da), where da is the area ele-

Sd-1
ment on Then {Snj" j 1,’’’, N(n) n
0,1,’’ "} is a complete orthonormal system of
L2(Sa-, da). We have, as the special case of the

-N(n)addition theorem, ,.,= Sn() N(n)/aa on
Sa-1 (n 0,1,’’ "), where aa is the surface area
a(Sa-) of Sa-. Here N(0) 1 and N(n) (2n
4- d- 2)F(n + d- 2)/F(n + 1)F(d- 1) for
n 1,2,.... Then we have the following Fourier

expansion of u(r) in terms of spherical harmo-
nics

(N (n)

(2) u(r) o""= an’SnJ())rn + blHa(r)

(N (n) ) -n-d+2+ =.
__

bS.() r

where Ha(r) Ha(x) with Ix I- r and a. and

bn (j’= 1, N(n) n O,1, ") are con-

stants. Here the series on the right hand side of
(2) converges uniformly in Sa- for any fix-
ed 0 < r < 1. Multiply /N(n)/aa +- S()

_
0

(n

_
1) to both sides of u(r)_ o(r-s) and


