On the Degrees of Irrationality of Hyperelliptic Surfaces

By Hisao YOSHIHARA

Faculty of Science, Niigata University (Communicated by Heisuke HIRONAKA, M. J. A., March 12, 1996)

1. Let L be a field, which is a finitely generated extension of a ground field k, and assume that $tr.deg._k L = n$. We denote by $d_r(L)$ the degree of irrationality of L over k, which is defined to be the number (cf. [2], [5]):

$$\min \left\{ m \middle| \begin{array}{l} m = [L:k(x_1,\ldots,x_n)], \text{ where } x_1,\ldots,\\ x_n \text{ are algebraically independent elements of } L. \end{array} \right.$$

We call the field $k(x_1, \ldots, x_n)$, which defines the value $d_r(L)$, a maximal rational subfield of L and write m.r.subf. for short. For an algebraic variety V defined over k, we define the degree of irrationality of V to be $d_r(k(V))$, where k(V) is the rational function field of V. Clearly it is a birational invariant of algebraic varieties. In other words it is the minimal degree of a dominant rational map from V to the projective n-space. Hence, when n=1, it coincides with the gonality of a curve. In case k is not algebraically closed, for example k = Q, we feel a great interest in the value d_r . Because, d_r seems to have some relations with the least number [k':k] such that the variety V has many rational points over k' (see, e.g. [1]). But it is very difficult to find this value. We assume that k = Chereafter. In this note we announce the results for $d_r(S)$ of hyperelliptic surfaces S. Details will appear elsewhere.

2. Let S denote a hyperelliptic surface. Of course we have that $d_r(S) \ge 2$. First we give examples.

Example 1. Let A_i (i = 1,2) be the abelian surface defined by the following period matrix:

$$\Omega_1 = \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & 0 & \beta \end{pmatrix} \text{ or } \Omega_2 = \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & 1/2 & \beta \end{pmatrix},$$
where $\Im \alpha \neq 0$ and $\Im \beta \neq 0$. Let g be the automorphism of A_i defined by

 $g(z_1, z_2) = (z_1 + 1/2, -z_2).$ Then $g^2 = id$ on A and $S_i = A_i/g$ is a hyperelliptic surface. Moreover letting $h(z_1, z_2) = (-z_1, z_2)$, we see that h defines an automorphism of S_i and S_i/h becomes a rational

surface. Note that A_i/h and A_i/gh are (birationally equivalent to) a ruled surface with irregularity 1 and a K3 surface respectively (cf. [6]).

Let K_s and \sim denote the canonical divisor of S and the linear equivalence of divisors respectively. Then we have the following

Lemma 2. Suppose that there is an automorphism φ of S with an order $d(\neq 1)$ such that S / φ is rational. Then d=2,3,4 or 6, and moreover the following facts hold true:

- (1) If d = 2 or 4, then $2K_S \sim 0$.
- (2) If d = 3, then $3K_s \sim 0$.
- (3) If d = 6, then $2K_S \sim 0$ or $3K_S \sim 0$.

Using this lemma, we obtain the following

Theorem 3. $d_r(S) = 2$ if and only if $2K_S \sim 0$, i.e., S is isomorphic to one of the surfaces in Example 1.

Before considering other surfaces, we present some more examples.

Example 4. Let A_i (i = 1,2) be the abelian surface defined by the following period matrix:

$$\Omega_1 = \begin{pmatrix} 1 & 0 & \omega & 0 \\ 0 & 1 & 0 & \omega \end{pmatrix} \text{ or }$$

$$\Omega_2 = \begin{pmatrix} 1 & 0 & (\omega - 1)/3 & 0 \\ 0 & 1 & (\omega - 1)/3 & \omega \end{pmatrix},$$

where $\omega = \exp(2\pi\sqrt{-1}/3)$. Let g_i be the automorphism of A_i defined by

$$g_1 z = (z_1 + (\omega + 2)/3, \omega z_2)$$
 and $g_2 z = (z_1 + 1/3, \omega z_2),$

where $z = (z_1, z_2)$. Then $g_i^3 = id$ on A and $S_i = A_i/g_i$ is a hyperelliptic surface. Moreover letting

 $h_1z=\omega z$ and $h_2z=(\omega z_1,\,\omega z_2+2/3)$, we see that h_i defines an automorphism of S_i and S_i/h_i becomes a rational surface. Note that A/h, A/gh and A/gh^2 are (birationally equivalent to) a rational surface, a K3 surface and a ruled surface with irregularity 1 respectively, where we put $A=A_i$, $g=g_i$ and $h=h_i$.

These examples are unique in the following sense.

Theorem 5. For hyperelliptic surfaces S the following conditions (i) and (ii) are equivalent: