On Subsets of C^{n+1} in General Position

By Nobushige TODA
Department of Mathematics, Nagoya Institute of Technology
(Communicated by Kiyosi ITÔ, M. J. A., March 12, 1996)

1. Introduction. Let X be a subset of \boldsymbol{C}^{n+1} such that $\# X \geq n+1$. It is said that X is in general position if any $n+1$ elements of X are linearly independent. From now on throughout the paper we suppose that X is in general position. Put

$$
\begin{gathered}
X(0)=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \in X: a_{n+1}=0\right\} \\
\text { and } \nu=\# X(0) .
\end{gathered}
$$

It is easily seen that $0 \leq \nu \leq n$. We introduce the following notion to refine the fundamental inequality of H . Cartan for holomorphic curves ([1]).

Definition 1. We say that
(i) X is maximal (in the sense of general position) if and only if for any Y in general position such that $X \subset Y \subset C^{n+1}, X=Y$.
(ii) X is ν-maximal if X is maximal and $\# X(0)=\nu$.

The purpose of this paper is to give an example of ν-maximal subset of \boldsymbol{C}^{n+1} for any $\nu(1$ $\leq \nu \leq n)$. Applications to the value distribution theory of holomorphic curves ([2], [3]) will appear elsewhere.
2. Lemma. We use the following notation.
(a) The difference product of x_{1}, \ldots, x_{n} :

$$
\begin{gathered}
\Delta_{n}=\Delta\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)= \\
\left|\begin{array}{ccccc}
x_{1}^{n-1} & x_{1}^{n-2} & \cdots & x_{1} & 1 \\
\vdots & \vdots & & \vdots & \vdots \\
x_{n}^{n-1} & x_{n}^{n-2} & \cdots & x_{n} & 1
\end{array}\right| .
\end{gathered}
$$

(b) The elementary symmetric polynomials in x_{1},

$$
\ldots, x_{n}
$$

$\sigma_{n 0}=\sigma_{0}\left(x_{1}, \ldots, x_{n}\right)=1$,
$\sigma_{n 1}=\sigma_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}$,
$\sigma_{n 2}=\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2}+x_{1} x_{3}+\cdots$
$+x_{n-1} x_{n}$,
$\sigma_{n n-1}=\sigma_{n-1}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n-1}$ $+x_{1} \cdots x_{n-2} x_{n}+\cdots+x_{2} \cdots x_{n}$,
$\sigma_{n n}=\sigma_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n}$,
$\sigma_{n n+1}=\sigma_{n+1}\left(x_{1}, \ldots, x_{n}\right)=0$.
(c) We put
$f_{n j}(t)=\sigma_{j}\left(1, t, \ldots, t^{n-1}\right)(j=0,1, \ldots, n+1)$.
These $f_{n j}$ are polynomials, which are not identically equal to zero except $f_{n n+1}$.

Lemma 1. For $j=1, \ldots, n$,

$$
\begin{aligned}
\sigma_{j}\left(x_{1}, \ldots, x_{n}\right)= & \sigma_{j}\left(x_{1}, \ldots, x_{n-1}\right) \\
& +\sigma_{j-1}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}
\end{aligned}
$$

This is easily seen from the definition of the elementary symmetric polynomials.

Lemma 2.
(1)

$$
\left.\begin{aligned}
& \quad\left|\begin{array}{ccccc}
\alpha_{1} & \alpha_{2} & \cdots & \cdots & \alpha_{n} \\
x_{n+1} \\
x_{1}^{n} & x_{1}^{n-1} & \cdots & \cdots & x_{1} \\
\cdot & 1 \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
x_{n}^{n} & x_{n}^{n-1} & \cdots & \cdots & x_{n}
\end{array}\right|
\end{aligned} \right\rvert\,
$$

The first equality is well-known and we can prove the second one by Lemma 1 .

Let $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n+1}$ be the standard basis of C^{n+1}.

Lemma 3. For any vector ($\alpha_{1}, \ldots ., \alpha_{n}$, α_{n+1}) of \boldsymbol{C}^{n+1} which is not equal to $0, \alpha \boldsymbol{e}_{1}$, or $\beta \boldsymbol{e}_{n+1}$, there exist complex numbers a_{1}, \ldots, a_{n} different from each other for which the vectors

$$
\begin{gathered}
\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}\right),\left(a_{1}^{n}, \ldots, a_{1}, 1\right), \ldots \\
\left(a_{n}^{n}, \ldots, a_{n}, 1\right)
\end{gathered}
$$

are linearly dependent, where α and β are any complex numbers.

Proof. We have only to find $x_{j}=a_{j}(j=1$, ..., n) different from each other for which the determinant (1) reduces to zero.
(a) The case when at least two of $\alpha_{1}, \ldots, \alpha_{n+1}$ are different from zero.

Put $x_{k}=t^{k-1} x_{1}(k=2, \ldots, n)$ and substitute them into (1). Then

$$
\sigma_{j}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{j} f_{n j}(t)(j=1, \ldots, n)
$$

and the right-hand side of (1) divided by Δ_{n} is equal to
$\alpha_{1}-\alpha_{2} f_{n 1}(t) x_{1}+\cdots$
$+(-1)^{n-1} \alpha_{n} f_{n-1}(t) x_{1}^{n-1}+(-1)^{n} \alpha_{n+1} f_{n n}(t) x_{1}^{n}$.
Let $t=t_{0}(\neq 0)$ be any number for which

