On Subsets of C^{n+1} in General Position

By Nobushige TODA

Department of Mathematics, Nagoya Institute of Technology (Communicated by Kiyosi ITÔ, M. J. A., March 12, 1996)

1. Introduction. Let X be a subset of C^{n+1} such that $\#X \ge n+1$. It is said that X is in general position if any n+1 elements of X are linearly independent. From now on throughout the paper we suppose that X is in general position. Put

$$X(0) = \{ \boldsymbol{a} = (a_1, \dots, a_n, a_{n+1}) \in X : a_{n+1} = 0 \}$$

and $\nu = \# X(0)$.

It is easily seen that $0 \le \nu \le n$. We introduce the following notion to refine the fundamental inequality of H. Cartan for holomorphic curves ([1]).

Definition 1. We say that

(i) X is maximal (in the sense of general position) if and only if for any Y in general position such that $X \subset Y \subset C^{n+1}$, X = Y.

(ii) X is ν -maximal if X is maximal and $\# X(0) = \nu$.

The purpose of this paper is to give an example of ν -maximal subset of C^{n+1} for any $\nu(1 \leq \nu \leq n)$. Applications to the value distribution theory of holomorphic curves ([2], [3]) will appear elsewhere.

2. Lemma. We use the following notation.
(a) The difference product of x₁,..., x_n:

$$\Delta_n = \Delta(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_i - x_j) = \\ \begin{vmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & x_1 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ x_n^{n-1} & x_n^{n-2} & \cdots & x_n & 1 \end{vmatrix}.$$

(b) The elementary symmetric polynomials in x_1 , ..., x_n :

$$\sigma_{n0} = \sigma_0(x_1, \dots, x_n) = 1, \sigma_{n1} = \sigma_1(x_1, \dots, x_n) = x_1 + \dots + x_n, \sigma_{n2} = \sigma_2(x_1, \dots, x_n) = x_1x_2 + x_1x_3 + \dots + x_{n-1}x_n, \dots$$

$$\sigma_{nn-1} = \sigma_{n-1}(x_1, \dots, x_n) = x_1 \cdots x_{n-1} + x_1 \cdots x_{n-2}x_n + \dots + x_2 \cdots x_n, \sigma_{nn} = \sigma_n(x_1, \dots, x_n) = x_1 \cdots x_n, \sigma_{nn+1} = \sigma_{n+1}(x_1, \dots, x_n) = 0. (c) We put$$

 $f_{nj}(t) = \sigma_j(1, t, \dots, t^{n-1})$ $(j = 0, 1, \dots, n+1)$. These f_{nj} are polynomials, which are not identically equal to zero except f_{nn+1} .

Lemma 1. For
$$j = 1, ..., n$$
,
 $\sigma_j(x_1, ..., x_n) = \sigma_j(x_1, ..., x_{n-1}) + \sigma_{j-1}(x_1, ..., x_{n-1})x_n$.

This is easily seen from the definition of the elementary symmetric polynomials.

Lemma 2.

(1)
$$\begin{vmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} & \alpha_{n+1} \\ x_{1}^{n} & x_{1}^{n-1} & \cdots & x_{1} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n}^{n} & x_{n}^{n-1} & \cdots & x_{n} & 1 \end{vmatrix}$$
$$= \Delta_{n} \sum_{j=1}^{n+1} (-1)^{j-1} \sigma_{nj-1} \alpha_{j}$$
$$= \Delta_{n} \sum_{j=1}^{n} (-1)^{j-1} \sigma_{n-1j-1} \cdot (\alpha_{j} - x_{n} \alpha_{j+1})$$

The first equality is well-known and we can prove the second one by Lemma 1.

Let e_1, \ldots, e_{n+1} be the standard basis of C^{n+1} .

Lemma 3. For any vector $(\alpha_1, \ldots, \alpha_n, \alpha_{n+1})$ of C^{n+1} which is not equal to $0, \alpha e_1$, or βe_{n+1} , there exist complex numbers a_1, \ldots, a_n different from each other for which the vectors

$$(\alpha_1, \ldots, \alpha_n, \alpha_{n+1}), (a_1^n, \ldots, a_1, 1), \ldots, (a_n^n, \ldots, a_n, 1)$$

are linearly dependent, where α and β are any complex numbers.

Proof. We have only to find $x_j = a_j (j = 1, ..., n)$ different from each other for which the determinant (1) reduces to zero.

(a) The case when at least two of $\alpha_1, \ldots, \alpha_{n+1}$ are different from zero.

Put $x_k = t^{k-1}x_1$ (k = 2, ..., n) and substitute them into (1). Then

 $\sigma_j(x_1,\ldots,x_n) = x_1^j f_{nj}(t) \ (j=1,\ldots,n)$

and the right-hand side of (1) divided by Δ_n is equal to

(2)
$$\alpha_1 - \alpha_2 f_{n1}(t) x_1 + \cdots$$

+ $(-1)^{n-1} \alpha_n f_{nn-1}(t) x_1^{n-1} + (-1)^n \alpha_{n+1} f_{nn}(t) x_1^n$.
Let $t = t_0 \neq 0$ be any number for which