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1. Introduction. In the previous paper [1],
we investigated Euler’s discretization of the sca-
lar autonomous ordinary differential equation
which has only one stable equilibrium point.
Under some conditions, it is shown that Euler’s
finite difference scheme Fat is chaotic for a suffi-
ciently large fixed time step At.

On the contrary, in this paper, for a suffi-
ciently small fixed time step At, we will find the
necessary and sufficient conditions under which

Fat is stable in the neighborhood of the equilib-
rium point, and the sufficient conditions under
which Fat is chaotic around the equilibrium
point.

2. Definitions and assumptions. For the
scalar autonomous O.D.E.

du
(1) dt f(u) u R1,
we put following assumptions"

f(u) is continuous in R
f(u) >o (u < O)
f (0) 0
f(u) < 0 (0 < u).

In other words, u--0 is the only stable equilib-
rium point. Euler’s discretization scheme for (1)
is as follows: with the fixed time step At,

Xn+ Xn
At f(x.),

x.+i x + At.f(x.).
Now, finite difference scheme Fat(X) is defined as

(2) Fat(x) x + At’f(x), (i.e. Xn+ Fat(Xn))
and we will investigate this dynamical system

F,(x).
3. Condition for stable behavior of Fat.

Generally speaking, Euler’s finite difference
scheme with sufficiently small At gives a good
approximation for the solution of differential
equation. For example, consider a differential
equation
du

au(1 u) (u > O, a is a positive constant).
dt
The orbits of the corresponding dynamical

system (2) converge to a stable equilibrium point
u-- 1 with any At less than 2/a. But the next
example shows that however small At is chosen,
the orbits don’t always converge to the equilib-
rium point:

du f v/- u (u < O)
dt [- v (u > 0).

In this case, Fat(x)is super-unstable at x 0
(F[t(O) oo), and it has a super-stable orbit
(___ At"/4) with period 2.

Theorem l(Lipschitz case). Assume that (1)
holds the following additional condition:

(3) If(u) < M0 (vu < 0)

(M0 is a positive constant).
Then, there exists AT > 0, such that for any
At(O < At < AT), Fat has no periodic orbit ex-
cept the equilibrium point x 0. And for any in-

itial point xo, FXt(xo) converges to the equilib-
rium point.

Proof of Theorem 1. Define subsets D_, D+,
DO andD’ of R by

D_ {(x,y) lx<y<0},
D+ {(x,y) 10< y<x}
Do-- {(x, y) 10 < x, y 0},
D’= {(x, y) y < 0 <x}.

Set AT 1/Mo. From the condition (3), for any
At(O < VAt< AT) and anyx< 0,

Fat(x) x + At’f(x) < x + AT’f(x) < x
+ AT’(- Mox) x(1 MOAT) O.
On the other hand, Fat(x) x + At’f(x)

x, so x < Fa,(x) < 0.
Hence, x < 0 implies (x, Fat(x)) D_ for any
At(O < VAt < AT).

Let x. F2(Xo) (n > 0) be an orbit of
There are 4 cases of behavior of x. as follows:
Case (a) x0 < 0. Then (x., X.+l) D_ for any
n > 0. Therefore the sequence x. increases
monotonously towards the equilibrium point.
Case (b) Xo>0, and (x.,x.+) D+ for any
n >_ 0. Then the sequence x. decreases monoto-
nously towards the equilibrium point.


