No. 2]

Proc. Japan Acad., 72, Ser. A (1996) 43

Discretization of Non-Lipschitz Continuous O.D.E. and Chaos

By Yoichi MAEDA and Masaya YAMAGUTI

Ryukoku University
(Communicated by Kiyosi ITO, M. J. A., Feb. 13, 1996)

1. Introduction. In the previous paper [1],
we investigated Euler’s discretization of the sca-
lar autonomous ordinary differential equation
which has only one stable equilibrium point.
Under some conditions, it is shown that Euler’s
finite difference scheme F,, is chaotic for a suffi-
ciently large fixed time step 4%

On the contrary, in this paper, for a suffi-
ciently small fixed time step A4¢, we will find the
necessary and sufficient conditions under which
F,, is stable in the neighborhood of the equilib-
rium point, and the sufficient conditions under
which F,, is chaotic around the equilibrium
point.

2. Definitions and assumptions.
scalar autonomous O.D.E.

M % — ) ue R,

For the

we put following assumptions:

f(w) is continuous in R’

fw) >0 (u<0)

f0) =0

flw) <0 (0<w.
In other words, # = O is the only stable equilib-
rium point. Euler’s discretization scheme for (1)
is as follows: with the fixed time step A4f,

xn+lAt xn — f(xn),

X, =x,+ At-f(x,).
Now, finite difference scheme F,,(x) is defined as
(2) F,(x) =x+ At f(@), (e x,,, = F,(z,))
and we will investigate this dynamical system

F,,(2).
3. Condition for stable behavior of F,,.
Generally speaking, Euler’'s finite difference

scheme with sufficiently small At gives a good
approximation for the solution of differential
equation. For example, consider a differential
equation

du
G au(l — u) (u =0, a is a positive constant).

The orbits of the corresponding dynamical

system (2) converge to a stable equilibrium point
u = 1 with any At less than 2/a. But the next
example shows that however small At is chosen,
the orbits don’t always converge to the equilib-
rium point:
du _ {\/—u (u < 0)
dt —Vu (u=0).
In this case, F,(x) is super-unstable at £ = 0
(F;,(0) = — ), and it has a super-stable orbit
(+ At?/4) with period 2.

Theorem 1(Lipschitz case). Assume that (1)
holds the following additional condition:

3) l—f_(i; <M, (Vu<0)

(M, is a positive constant).
Then, there exists 47T > 0, such that for any
At(0 < At < AT), F,, has no periodic orbit ex-
cept the equilibrium point x = 0. And for any in-
itial point x,, FAn,(xo) converges to the equilib-
rium point.

Proof of Theorem 1.
D, andD’ of R® by

D_={(,p|x<y<o0},
D,={x,p|0<y<uz
D,={(x,y)|0<zx,y=0},
D ={(x,yly<0<ua.
Set AT = 1/M,. From the condition (3), for any
At(0 < VAt < AT) and any £ < 0,
F,(x) =x+ At f(x) <z + AT f(x) <z

+ AT (— M) = x(1 — M,AT) = 0.

On the other hand, F,,(x) = x + At-f(x) >
z,sox < F,,(x) <O0.

Hence, x < 0 implies (z, F,,(x)) € D_ for any
A0 < VAt < AD).

Let x, = Fy,(x,) (n = 0) be an orbit of F,,.
There are 4 cases of behavior of x, as follows:
Case (a) x, < 0. Then (z,, ,,,) € D_ for any
n =2 0. Therefore the sequence X, increases
monotonously towards the equilibrium point.
Case (b) x,> 0, and (z,, 2,,;) € D, for any
n = 0. Then the sequence x, decreases monoto-
nously towards the equilibrium point.

Define subsets D_, D,,



