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Let M be a bounded region in R with
smooth boundary 0M. Let B(s; w) be the disk of
radius s with the center w. Fix a (0,1). Fix
Let m 1,2," be a parameter. We put n
[mX-a]. We remove n disks of centers w(m)
(wx,’’’, wn) with radius /rn from M and we
get Mw(m)= M\n disks. We consider M as a

probability space by fixing a positive continuous
function V on M satisfying

fM V(X) dx 1

so that

P(x A) J V(x)dx.

Let Mn
be the product probability space. All con-

figuration M" of the center of disks w(m) can be
considered as a probability space M by the sta-
tistical law stated above.

We put
n {w(m) Mn’, B(a/m’wi),

B(a/m;w) for i4:j,B(a/m;w) does
not intersect OM. For a (0,1), it is easy to
show that

lim P(w(m) M"; w(m) 1) 1.

Hereafter we assume that w(m) 19f. Let p(w(m))
be the j th eigenvalue of the Laplacian of the fol-
lowing problem"

AU(X) 2U(X) X Mw(m)
(1.1)

u (x) =0 x OM

u(x) + k(a/m)- u(x) 0

x (J " OB (a /m w)=1

Here k denotes the positive constant and

denotes the derivative along the exterior normal
direction with respect toMw(m). Let tj(V) be the j
th eigenvalue of the SchrOdinger operator A
2zrk-Xcrl-aV(x) in M under the Dirichlet condi-
tion on OM. We have the following

Theorem 1. Fix j. Fixa (0,1). Fix an,
arbitrary 12 > O. And we fix an arbitrary O.
Then, there exists a small constant cro such that we

have

lim P(w(m) M" ft (w(m)) ft (V)

< m"*(m-x + m-)) 1
for a (0, do).

Remark. It should be remarked that our
problem is different from the eigenvalue problem
of the Laplacian in a domain with many small
Dirichlet balls.
See Kac [2], Rauch-Taylor [5], Ozawa [3],[4]. See
also Chavel-Feldman [1], Sznitman [6].

We introduce an operator. Here we write wi
as i. We define

$

r(x, y w(m)) G(x, y) + g(a/m) Za(x, i)
m* i=l

G(i, y) + Z g(a/rn) Z()G(x, i)GG(i, y)
$----2,

where m [(logm) Here the sum (s)is the
summation whose indices run over all ix,’’’, is
such that i 4: i for #: ft. Here
gs(e) (-- 1)s(--(2zr)-Xlog e + k(2:rc)-ia-x) -s.

Our proof of Theorem 1 can be obtained by
Theorems 2,3 and 4.

We put

(G()f) (x) (.. G() (x, y) f(y) dy
w(m)

and

(x) ._ r(x y w(m) f(y) dy.
w(m)

Then, we have the following
Theorem 2. There exists oo 0 such that

(1) holds for any o (0, Olo)"
(1) P(w(m) i ;1[ G(m) Rw(m) [[L2(Mw,m))

<- C m (m- + m-) > 1-- m-for some > O. Here p is an arbitrary fixed positive
number.

We put as the characteristic function of

M(m) and

([(m)f) (x) fM r(x, y w(m)) f(y)dy.

Then, we have the following

Theorem 3. Fix O. Then,

-/


