Random Media with Many Small Robin Holes

By Shin OZAWA

Department of Mathematics, Faculty of Science, Tokyo Institute of Technology (Communicated by Kiyosi ITÔ, M. J. A., Jan. 12, 1996)

Let M be a bounded region in \mathbb{R}^2 with smooth boundary ∂M . Let $B(\varepsilon; w)$ be the disk of radius ε with the center w. Fix $\sigma \in (0,1)$. Fix α . Let $m = 1, 2, \cdots$ be a parameter. We put n = $[m^{1-\sigma}]$. We remove *n* disks of centers w(m) = (w_1, \dots, w_n) with radius α/m from M and we get $M_{w(m)} = M \setminus \overline{n \text{ disks}}$. We consider M as a probability space by fixing a positive continuous function V on \bar{M} satisfying

$$\int_{M} V(x) \, dx = 1$$

so that

$$P(x \in A) = \int_A V(x) dx.$$

Let M^n be the product probability space. All configuration M^n of the center of disks w(m) can be considered as a probability space M^n by the statistical law stated above.

We put $\tilde{M}^n = \{w(m) \in M^n; \overline{B(\alpha/m; w_i)}\}$ $\cap \overline{B(\alpha/m; w_i)} = \phi$ for $i \neq j$, $\overline{B(\alpha/m; w_i)}$ does not intersect ∂M . For $\sigma \in (0,1)$, it is easy to show that

$$\lim_{m \to \infty} P(w(m) \in M^n; w(m) \in \tilde{M}^n) = 1.$$

Hereafter we assume that $w(m) \in \tilde{M}^n$. Let $\mu_i(w(m))$ be the *j* th eigenvalue of the Laplacian of the following problem:

(1.1)
$$\begin{aligned} -\Delta u(x) &= \lambda u(x) & x \in M_{w(m)} \\ u(x) &= 0 & x \in \partial M \end{aligned}$$
$$u(x) + k(\alpha/m)^{\sigma} \frac{\partial}{\partial \nu_x} u(x) = 0$$
$$x \in \bigcup_{i=1}^n \partial B(\alpha/m; w_i).$$

Here k denotes the positive constant and $\frac{\partial}{\partial \nu_r}$ denotes the derivative along the exterior normal direction with respect to $M_{w(m)}$. Let $\mu_j(V)$ be the j th eigenvalue of the Schrödinger operator $-\Delta$ + $2\pi k^{-1}\alpha^{1-\sigma}V(x)$ in M under the Dirichlet condition on ∂M . We have the following

Theorem 1. Fix j. Fix $\sigma \in (0,1)$. Fix an arbitrary $\mu^* > 0$. And we fix an arbitrary $\tilde{\epsilon} > 0$. Then, there exists a small constant α_0 such that we have

$$\lim_{m \to \infty} P(w(m) \in M^{n}; | \mu_{j}(w(m)) - \mu_{j}(V) | < m^{\mu^{*}}(m^{\sigma-1} + m^{-\sigma})) = 1$$

for $\alpha \in (0, \alpha_0)$.

Remark. It should be remarked that our problem is different from the eigenvalue problem of the Laplacian in a domain with many small Dirichlet balls.

See Kac [2], Rauch-Taylor [5], Ozawa [3],[4]. See also Chavel-Feldman [1], Sznitman [6].

We introduce an operator. Here we write w_i as i. We define

$$r(x, y; w(m)) = G(x, y) + g_1(\alpha/m) \sum_{i=1}^{s} G(x, i)$$

 $G(i, y) + \sum_{s=2}^{m^*} g_s(\alpha/m) \sum_{(s)} G(x, i_1) G_1 G(i_s, y)$
where $m^* = [(\log m)^2]$. Here the sum $\sum_{(s)}$ is the

summation whose indices run over all i_1, \dots, i_s such that $i_{\nu} \neq i_{\mu}$ for $\nu \neq \mu$. Here

$$g_s(\varepsilon) = (-1)^s (-(2\pi)^{-1} \log \varepsilon + k(2\pi)^{-1} \varepsilon^{\sigma-1})^{-s}.$$

Our proof of Theorem 1 can be obtained by Theorems 2,3 and 4.

$$(G_{w(m)}f)(x) = \int_{M_{w(m)}} G_{w(m)}(x, y) f(y) dy$$

$$(R_{w(m)}f)(x) = \int_{M_{w(m)}} r(x, y; w(m)) f(y) dy.$$

Then, we have the following

Theorem 2. There exists $\alpha_0 > 0$ such that

(1) holds for any
$$\alpha \in (0, \alpha_0)$$
:
(1) $P(w(m) \in M^n; \| G_{w(m)} - R_{w(m)} \|_{L^2(M_{w(m)})}$

$$\leq C m^{\rho} (m^{-\sigma} + m^{\sigma-1})) \geq 1 - m^{-\xi}$$

for some $\xi > 0$. Here ρ is an arbitrary fixed positive number.

We put χ as the characteristic function of $M_{w(m)}$ and

$$(\tilde{R}_{w(m)}f)(x) = \int_{M} r(x, y; w(m)) f(y) dy.$$

Then, we have the following

Theorem 3. Fix
$$\xi > 0$$
. Then,
 $P(w(m) \in M^n; \|\tilde{R}_{w(m)} - \chi \tilde{R}_{w(m)} \chi\|_{L^2(M)} = 0 (m^{\xi-\sigma}))$
 $\geq 1 - m^{-\xi/2}$