An Anticipatory Itô Formula

By Hui-Hsiung KUO^{*)} and Kenjiro NISHI^{**)}

(Communicated by Kiyosi ITÔ, M. J. A., Feb. 13, 1996)

1. Introduction. Let B(t) be a Brownian motion. The well-known Itô formula states that for any C^2 -function F on R,

$$F(B(t)) = F(B(0)) + \int_0^t F'(B(s)) dB(s) + \frac{1}{2} \int_0^t F''(B(s)) ds,$$

where $\int_0^t F'(B(s)) dB(s)$ is an Itô integral. Suppose θ is a C^2 -function on \mathbb{R}^2 . The purpose of this paper is to find an anticipatory Itô formula for $\theta(B(t), B(1))$. It is anticipatory because of the appearance of B(1). In fact, we will give such a formula for $\theta(X(t), B(1))$ with X(t)being a Wiener integral $X(t) = \int_0^t f(s) dB(s)$ such that $f \in L^{\infty}([0,1])$.

2. Hitsuda-Skorokhod integrals. Let $\mathscr{S}(\mathbf{R})$ denote the real Schwartz space on \mathbf{R} . The standard Gaussian measure on its dual space $\mathscr{S}'(\mathbf{R})$ is denoted by μ . Let (L^2) be the complex Hilbert space of square integrable functions on $(\mathscr{S}'(\mathbf{R}), \mu)$. Let $(\mathscr{S}) \subset (L^2) \subset (\mathscr{S})^*$ be a Gel'fand triple associated with $(\mathscr{S}'(\mathbf{R}), \mu)$ (see [2], [5], or [7]). Let ∂_t denote the white noise differentiation. It is a continuous linear operator from (\mathscr{S}) into itself. Its adjoint ∂_t^* is a continuous linear operator from $(\mathscr{S})^*$ into itself.

Let g be a weakly measurable function from [0,1] into $(\mathscr{S})^*$ such that $t \mapsto \partial_t^* g(t)$ is Pettis integrable. The integral $\int_0^1 \partial_t^* g(t) dt$ defines a generalized function in $(\mathscr{S})^*$. If it is a random variable in (L^2) , then we call it the *Hitsuda-Skorokhod integral* of g([3], [8]). For instance, if $g \in L^2([0,1] \times \mathscr{S}'(\mathbf{R}))$ is nonanticipating, then $\int_0^1 \partial_t^* g(t) dt$ is a Hitsuda-Skorokhod integral. In

fact, for such a function g, its Hitsuda-Skorokhod integral agrees with its Itô integral [4], i.e.,

$$\int_0^1 \partial_t^* g(t) dt = \int_0^1 g(t) dB(t),$$

where B(t) is the Brownian motion $B(t, x) = \langle x, 1_{[0,t)} \rangle$, $t \ge 0$, $x \in \mathscr{S}'(\mathbf{R})$. In particular, we have the equality

$$\left\| \int_{0}^{1} \partial_{t}^{*} g(t) dt \right\|^{2} = \int_{0}^{1} \| g(t) \|^{2} dt.$$

where $\|\cdot\|$ denotes the (L^2) -norm. However, this equality may hold even if g is not nonanticipating. For example, this equality holds for

$$g(t) = \begin{cases} B(t) + B(1) - B(1-t), & \text{if } 0 \le t \le \frac{1}{2}; \\ B(1-t) + B(1) - B(t), & \text{if } \frac{1}{2} < t \le 1. \end{cases}$$

3. An anticipatory Itô formula. Let B(t) be the above Brownian motion. We have the following theorem.

Theorem 1. Let $f \in L^{\infty}([0,1])$ and let X(t)= $\int_{0}^{t} f(s) dB(s)$, $t \in [0,1]$, be the Wiener integral of f. Suppose $\theta(x, y)$ is a C²-function on \mathbb{R}^{2} such that

$$\theta(X(\cdot), B(1)), \frac{\partial^2 \theta}{\partial x^2} (X(\cdot), B(1)),$$
$$\frac{\partial^2 \theta}{\partial x \partial y} (X(\cdot), B(1)) \in L^2([0, 1] \times \mathscr{S}'(\mathbf{R})).$$

Then for any $0 \le t \le 1$, the integral $\int_0^t \partial_s^*(f(s))$

 $\frac{\partial \theta}{\partial x}(X(s), B(1)))ds \text{ is a Hitsuda-Skorokhod integral} and the following equality holds in <math>(L^2)$ for all $0 \leq t \leq 1$,

$$\theta(X(t), B(1)) = \theta(X(0), B(1)) + \int_0^t \partial_s^* \left(f(s) \frac{\partial \theta}{\partial x} (X(s), B(1)) \right) ds + \int_0^t \left(\frac{1}{2} f(s)^2 \frac{\partial^2 \theta}{\partial x^2} (X(s), B(1)) \right) + f(s) \frac{\partial^2 \theta}{\partial x \partial y} (X(s), B(1)) \right) ds.$$

To prove this theorem, we first assume that f is a simple function. In this case, we can use

^{*)} Department of Mathematics, Louisiana State University, U.S.A.

^{**)} Department of Mathematics, Meijo University. Research supported by U. S. Army Research Office grant DAAH04-94-G-0249.