Triangles and Elliptic Curves. VII

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., Feb. 13, 1996)

This is a continuation of series of papers [2] each of which will be referred to as (I), (II), (III), (IV), (V), (VI) in this paper. In (VI) we considered exclusively real triangles t=(a,b,c) and showed that there is a 1-1 correspondence between the classes of similarity of t's and the isomorphism classes of triples E_t 's of elliptic curves. In this paper, we pursue the same theme for those objects rational over any subfield k of R. This time, we shall introduce a third object (a quartic surface over Q) in addition to triangles and elliptic curves to clarify the matter.

§1. Tr and S_+ . As in (VI), we begin with the set

(1.1)
$$Tr = \{t = (a, b, c) \in \mathbb{R}^3; 0 < a < b + c, 0 < b < c + a, 0 < c < a + b\}.$$

For t, $t' \in Tr$, we write $t \sim t'$ if they are similar, i.e., if t = rt' for some $r \in R$. For any subfield $k \subseteq R$, put

$$(1.2) Tr(k) = Tr \cap k^3.$$

If $t \sim t'$, t, $t' \in Tr(k)$, note that t = rt' with $r \in k$. So we can speak of the embedding $\widetilde{Tr}(k) \subset \widetilde{Tr}$ of quotients in the obvious way.

Next, we consider the set

(1.3)
$$S_{+} = \{P = (x, y, z) \in \mathbb{R}^{3}; x, y, z > 0, (xy)^{\frac{1}{2}} + (yz)^{\frac{1}{2}} + (zx)^{\frac{1}{2}} = 1\},$$

where (and hereafter) we assume that $a^{\frac{1}{2}} > 0$ when a > 0. On rationalizing the defining relation in (1.3), we have

(1.4) $S_{+} = \{P \in \mathbf{R}_{+}^{3}; 1 > xy + yz + zx, (1 - xy - yz - zx)^{2} - 4(x + y + z)xyz - 8xyz = 0\},$ where (and hereafter) we put, for $k \subseteq R$, $k_{+} = \{a \in k; a > 0\}.$

For $k \subseteq \mathbf{R}$, we put

$$(1.5) S_{+}(k) = S_{+} \cap k^{3}.$$

Let A, B, C be angles of t = (a, b, c) so that A is between sides b and c; similarly for B, C. Call θ a map: $Tr \rightarrow R_+^3$ given by

(1.6) $\theta(t) = (\tan^2(A/2), \tan^2(B/2), \tan^2(C/2))$. Since θ is defined by angles only, it induces a map $\tilde{\theta}: \widetilde{Tr} \to \mathbb{R}^3_+$.

(1.8) **Theorem.** For any subfield $k \subseteq \mathbf{R}$, the map

 $ilde{ heta}$ induces a bijection:

$$\widetilde{Tr}(k) \cong S_{+}(k)$$
.

Proof. By abuse of notation, put

 $(1.9) f(\alpha) = \tan \alpha, \ \alpha \in I = (0, \pi/2).$

Note that f is a monotone increasing function with range $(0, +\infty)$ which satisfies the functional equation

(1.10) $f(\alpha) f(\pi/2 - \alpha) = 1$, $\alpha \in I$, and the (stronger form of) addition formula

(1.11)
$$f(\alpha)f(\beta) + f(\beta)f(\gamma) + f(\gamma)f(\alpha) = 1$$
$$\Leftrightarrow \alpha + \beta + \gamma = \pi/2.$$

Now let $t = (a, b, c) \in Tr$ and A, B, C be angles of t as above. Putting $\alpha = A/2$, $\beta = B/2$, $\gamma = C/2$ in (1.9), (1.11), we find that the point $\theta(t) = (f(\alpha)^2, f(\beta)^2, f(\gamma)^2)$ belongs to S_+ . It is obvious that $\theta(t) = \theta(t')$ implies $t \sim t'$. Hence the map $\tilde{\theta}: \widetilde{Tr} \to S_+$ is injective. Next, for a subfield $k \subseteq R$, let $t = (a, b, c) \in Tr(k)$. Then $\cos A = (b^2 + c^2 - a^2)/2bc$ belongs to k and so does $f(\alpha)^2 = (1 - \cos A)/(1 + \cos A)$; similarly for $f(\beta)^2$, $f(\gamma)^2$. Hence $\tilde{\theta}$ induces an injection $\widetilde{Tr}(k) \to S_+(k)$. Finally, it remains to show that this map is surjective. So take any point $P = (x, y, z) \in S_{+}(k)$. By (1.11), we can find angles A, B, C, 0 < A, B, $C < \pi$ so that A $+B+C=\pi$ and that $x=f(\alpha)^2$, $y=f(\beta)^2$, $z = f(\gamma)^2$, where $\alpha = A/2$, etc. Choose a triangle $t = (a, b, c) \in Tr$ with angles A, B, C such that c = 1. (In case t happens to be a right triangle, we may assume without loss of generality that $C = \pi/2$, i.e., c = the hypotenuse of t =1.) Note that $\cos A = (1 - f(\alpha)^2)/(1 + f(\alpha)^2)$ $= (1-x)/(1+x) \in k$; similarly cos B, cos C $\in k$. On the other hand, though $\sin A =$ $2f(\alpha)/(1+f(\alpha)^2)$ may not belong to k in general, note also that $\sin^2 A = 4x/(1+x)^2 \in k$; similarly for $\sin^2 B$, $\sin^2 C$. On squaring each term of the sine formula, we have

(1.11) $a^2/\sin^2 A = b^2/\sin^2 B = 1/\sin^2 C$, so we see that a^2 , b^2 belong to k. Since $\cos A$, $\cos B$ are both non-zero elements of k (by our assumption on the angle C), the cosine formulas