Triangles and Elliptic Curves. VII

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi Iyanaga, M. J. A., Feb. 13, 1996)

This is a continuation of series of papers [2] each of which will be referred to as (I), (II), (III), (IV), (V), (VI) in this paper. In (VI) we considered exclusively real triangles $t=(a, b, c)$ and showed that there is a $1-1$ correspondence between the classes of similarity of t 's and the isomorphism classes of triples \boldsymbol{E}_{t} 's of elliptic curves. In this paper, we pursue the same theme for those objects rational over any subfield k of \boldsymbol{R}. This time, we shall introduce a third object (a quartic surface over \boldsymbol{Q}) in addition to triangles and elliptic curves to clarify the matter.
§1. Tr and \boldsymbol{S}_{+}. As in (VI), we begin with the set
(1.1) $\operatorname{Tr}=\left\{t=(a, b, c) \in \boldsymbol{R}^{3} ; 0<a<b+c\right.$,

$$
0<b<c+a, 0<c<a+b\}
$$

For $t, t^{\prime} \in T r$, we write $t \sim t^{\prime}$ if they are similar, i.e., if $t=r t^{\prime}$ for some $r \in \boldsymbol{R}$. For any subfield $k \subset \boldsymbol{R}$, put
(1.2) $\quad \operatorname{Tr}(k)=\operatorname{Tr} \cap k^{3}$.

If $t \sim t^{\prime}, t, t^{\prime} \in \operatorname{Tr}(k)$, note that $t=r t^{\prime}$ with $r \in k$. So we can speak of the embedding $\widetilde{\operatorname{Tr}}(k) \subset \widetilde{\operatorname{Tr}}$ of quotients in the obvious way.

Next, we consider the set

$$
\begin{align*}
& S_{+}=\left\{P=(x, y, z) \in \boldsymbol{R}^{3} ; x, y, z>0,\right. \tag{1.3}\\
& \left.\quad(x y)^{\frac{1}{2}}+(y z)^{\frac{1}{2}}+(z x)^{\frac{1}{2}}=1\right\},
\end{align*}
$$

where (and hereafter) we assume that $a^{\frac{1}{2}}>0$ when $a>0$. On rationalizing the defining relation in (1.3), we have
(1.4) $S_{+}=\left\{P \in \boldsymbol{R}_{+}^{3} ; 1>x y+y z+z x\right.$, $\left.(1-x y-y z-z x)^{2}-4(x+y+z) x y z-8 x y z=0\right\}$, where (and hereafter) we put, for $k \subset R, k_{+}=$ $\{a \in k ; a>0\}$.

For $k \subset \boldsymbol{R}$, we put

$$
\begin{equation*}
S_{+}(k)=S_{+} \cap k^{3} . \tag{1.5}
\end{equation*}
$$

Let A, B, C be angles of $t=(a, b, c)$ so that A is between sides b and c; similarly for B, C. Call θ a map: $\operatorname{Tr} \rightarrow \boldsymbol{R}_{+}^{3}$ given by
(1.6) $\quad \theta(t)=\left(\tan ^{2}(A / 2), \tan ^{2}(B / 2), \tan ^{2}(C / 2)\right)$. Since θ is defined by angles only, it induces a map $\tilde{\theta}: \widetilde{T r} \rightarrow \boldsymbol{R}_{+}^{3}$.
(1.8) Theorem. For any subfield $k \subset \boldsymbol{R}$, the map
$\tilde{\theta}$ induces a bijection:

$$
\widetilde{\operatorname{Tr}}(k) \simeq S_{+}(k) .
$$

Proof. By abuse of notation, put
(1.9) $f(\alpha)=\tan \alpha, \alpha \in I=(0, \pi / 2)$.

Note that f is a monotone increasing function with range $(0,+\infty)$ which satisfies the functional equation
(1.10) $f(\alpha) f(\pi / 2-\alpha)=1, \alpha \in I$, and the (stronger form of) addition formula
(1.11) $\quad f(\alpha) f(\beta)+f(\beta) f(\gamma)+f(\gamma) f(\alpha)=1$ $\Leftrightarrow \alpha+\beta+\gamma=\pi / 2$.
Now let $t=(a, b, c) \in \operatorname{Tr}$ and A, B, C be angles of t as above. Putting $\alpha=A / 2, \beta=B / 2$, $\gamma=C / 2$ in (1.9), (1.11), we find that the point $\theta(t)=\left(f(\alpha)^{2}, f(\beta)^{2}, f(\gamma)^{2}\right)$ belongs to S_{+}.
It is obvious that $\theta(t)=\theta\left(t^{\prime}\right)$ implies $t \sim t^{\prime}$. Hence the map $\tilde{\theta}: \widetilde{\operatorname{Tr}} \rightarrow S_{+}$is injective. Next, for a subfield $k \subset \boldsymbol{R}$, let $t=(a, b, c) \in \operatorname{Tr}(k)$. Then $\cos A=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c$ belongs to k and so does $f(\alpha)^{2}=(1-\cos A) /(1+\cos A)$; similarly for $f(\beta)^{2}, f(\gamma)^{2}$. Hence $\tilde{\theta}$ induces an injection $\widetilde{\operatorname{Tr}}(k) \rightarrow S_{+}(k)$. Finally, it remains to show that this map is surjective. So take any point $P=(x, y, z) \in S_{+}(k)$. By (1.11), we can find angles $A, B, C, 0<A, B, C<\pi$ so that A $+B+C=\pi$ and that $x=f(\alpha)^{2}, y=f(\beta)^{2}$, $z=f(\gamma)^{2}$, where $\alpha=A / 2$, etc. Choose a triangle $t=(a, b, c) \in \operatorname{Tr}$ with angles A, B, C such that $c=1$. (In case t happens to be a right triangle, we may assume without loss of generality that $C=\pi / 2$, i.e., $c=$ the hypotenuse of $t=$ 1.) Note that $\cos A=\left(1-f(\alpha)^{2}\right) /\left(1+f(\alpha)^{2}\right)$ $=(1-x) /(1+x) \in k$; similarly $\cos B, \cos C$ $\in k$. On the other hand, though $\sin A=$ $2 f(\alpha) /\left(1+f(\alpha)^{2}\right)$ may not belong to k in general, note also that $\sin ^{2} A=4 x /(1+x)^{2} \in k$; similarly for $\sin ^{2} B, \sin ^{2} C$. On squaring each term of the sine formula, we have
(1.11) $a^{2} / \sin ^{2} A=b^{2} / \sin ^{2} B=1 / \sin ^{2} C$, so we see that a^{2}, b^{2} belong to k. Since $\cos A$, $\cos B$ are both non-zero elements of k (by our assumption on the angle C), the cosine formulas

