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This is a continuation of series of papers [2]
each of which will be referred to as (I), (II), (III),
(IV), (V), (VD) in this paper. In (VI) we considered
exclusively real triangles ¢= (a, b, ¢) and
showed that there is a 1-1 correspondence be-
tween the classes of similarity of #'s and the iso-
morphism classes of triples E,’s of elliptic
curves. In this paper, we pursue the same theme
for those objects rational over any subfield k£ of
R. This time, we shall introduce a third object (a
quartic surface over @) in addition to triangles
and elliptic curves to clarify the matter.

§1. Trand S.. As in (VI), we begin with
the set
A Tr=1{=1(a, b, o) €ER;0<a<b+ec,

0<b<c+a 0<c<a-++ b}

For t, t' € Tr, we write { ~ t’ if they are simi-
lar, i.e., if £t = 7t for some » € R. For any sub-
field £k < R, put
(1.2) Tr(k) = Tr N k.
If t~1t,t t € Tr(k), note that t= 7t with
r < k. So we can speak of the embedding
Tr(k) < T7 of quotients in the obvious way.
Next, we consider the set

S,={P=(x,y,2) €R’; x,y,2>0,

(xy)% + (yz)% + (zx)% =1},
where (and hereafter) we assume that a2 > 0
when a > 0. On rationalizing the defining rela-
tion in (1.3), we have
(1.4) S,={PE€R:;1>zxy+ yz+ zr,
(Q—zy—yz—z2x)’—4(x+y+2)2yz— 8xyz=0},
where (and hereafter) we put, for k C R, k, =
{a€ k;a> 0}
For k C R, we put
S,(k) =S, n kK.

Let A, B, C be angles of t= (a, b, ¢) so
that A is between sides b and c ; similarly for B,
C. Call 6 a map: Tr— Ri given by
(1.6) 6(t) = (tan’(A/2), tan’(B/2), tan’(C/2)).
Since 0 is defined by angles only, it induces a
map 6 : Tr— R:.
(1.8) Theorem. For any subfield k < R, the map

(1.3)

(1.5)

6 induces a bijection :
Trk) = S, (k).

Proof. By abuse of notation, put
(1.9 f(a) =tana,a€I= (0, n/2).

Note that f is a monotone increasing function

with range (0, + ©0) which satisfies the func-

tional equation

(1.10) fl@fx/2—a) =1,a€ 1,

and the (stronger form of) addition formula

111  f@f@® +fPB @)+ fla) =1
Sa+pB+r=xn/2.

Now let t = (a, b, ¢) € Tr and A, B, C be
angles of ¢ as above. Puttinga = A/2,8=B/2,
ry=C/2 in (1.9), (1.11), we find that the point
6t) = (f(@?, FB?, F(1? belongs to S,.

It is obvious that 6(f) = 6(¢) implies ¢~ ¢
Hence the map 6:Tr— S, is injective. Next, for
a subfield Kk C R, let t= (a, b, c) € Tr(k).
Then cos A = (B> + ¢ — a®)/2bc belongs to k
and so does f(a)® = (1 — cos A)/(1 + cos A) ;
similarly for f(B)?, f(y)%. Hence 6 induces an in-
jection T7(k) — S, (k). Finally, it remains to
show that this map is surjective. So take any
point P = (x, y, 2) € S,(k). By (1.11), we can
find angles A, B, C, 0 < A, B, C < w so that A
+ B+ C=nx and that z=f(@? y=rf(P°>
z=f(y)? where @ = A/2, etc. Choose a triangle
t=(a, b, c) € Tr with angles A, B, C such
that ¢ = 1. (In case ¢t happens to be a right
triangle, we may assume without loss of general-
ity that C = m /2, i.e., ¢ = the hypotenuse of t =
1.) Note that cosA = (1 — f(@?*)/1 + f(a)?
= (1 — x)/(1 + x) € k; similarly cos B, cos C
€ k. On the other hand, though sinA =
27(a)/(1 + f(@)? may not belong to k in gene-
ral, note also that sin’A = 4z/(1 + 2)° € k;
similarly for sin’B, sin’C. On squaring each
term of the sine formula, we have

(1.11) a’/sin’A = b*/sin’B = 1/sin’C,

so we see that a’, b° belong to k. Since cos A,
cos B are both non-zero elements of k (by our
assumption on the angle C), the cosine formulas



