A Note on the Iwasawa λ-invariants of Real Quadratic Fields

By Humio ICHImURA
Dapartment of Mathematics, Yokohama City University
(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1996)

§1. Introduction For a number field k and a prime number p, denote respectively by $\lambda_{p}(k)$ and $\mu_{p}(k)$ the Iwasawa λ-invariant and the μ-invariant associated to the ideal class group of the cyclotomic \boldsymbol{Z}_{p}-extension over k. It is conjectured that $\lambda_{p}(k)=\mu_{p}(k)=0$ for any totally real number field k and any p ([11, p. 316], [7]), which is often called Greenberg's conjecture. As for μ-invariants, we know that $\mu_{p}(k)=0$ when k is an abelian field ([6]). The conjecture is still open even for real quadratic fields in spite of efforts of several authors (see Remark 2(2), Remark 3).

Let p be a fixed odd prime number and $k=$ $\boldsymbol{Q}(\sqrt{d})$ a real quadratic field. Denote by χ the primitive Dirichlet character associated to k. Let $\lambda_{p}^{*}(k)$ be the λ-invariant of the power series associated to the p-adic L-function $L_{p}(s, \chi)$ (cf. [21, Thm. 7.10]). We have $\lambda_{p}(k) \leq \lambda_{p}^{*}(k)$ by the Iwasawa main conjecture (proved in [15]). So, $\lambda_{p}(k)=0$ if $\lambda_{p}^{*}(k)=0$. But, there are several examples with $\lambda_{p}^{*}(k) \geq 1$ (cf. [7, p. 266], [3]). Thus, it is natural to consider the following weak conjecture:

$$
\lambda_{p}(k) \leq \max \left\{0, \lambda_{p}^{*}(k)-1\right\} ?
$$

Let χ^{*} be the primitive Dirichlet character associated to $\omega \chi^{-1}$, where ω denotes the Teichmüller character $\boldsymbol{Z} / p \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{p}$. When $\chi^{*}(p)=1$, it is known that $\lambda_{p}^{*}(k) \geq 1$ and the weak conjecture is valid (see e.g. [10]).

The purpose of this note is to give some families of infinitely many real quadratic fields k with $\chi^{*}(p) \neq 1$ for which $\lambda_{p}^{*}(k) \geq 1$ and the weak conjecture is valid.
§2. Result/Remarks. Fix an odd prime number p and a square free natural number r with $\left(\frac{r}{p}\right)=-1$, where $\left(\frac{*}{p}\right)$ denotes the quadratic residue symbol. For each natural number m, we put

$$
d_{m}^{(1)}=p^{4} r^{2} m^{2}+r, d_{m}^{(2)}=p^{4} m^{2}+p
$$

Denote by $k_{m}^{(i)}$ the real quadratic field
$\boldsymbol{Q}\left(\sqrt{d_{m}^{(i)}}\right)(i=1,2)$. The prime p remains prime in $k_{m}^{(1)}$, and ramifies in $k_{m}^{(2)}$. Further, we have $\chi^{*}(p) \neq 1$ for these real quadratic fields. We prove the following

Proposition. If $d_{m}^{(i)}$ is square free, then, $\lambda_{p}^{*}\left(k_{m}^{(i)}\right) \geq 1$ and the weak conjecture is valid for $k_{m}^{(i)}(i=1,2)$.

Remark 1. Since the polynomial $p^{4} r^{2} X^{2}+r$ (resp. $p^{4} X^{2}+p$) in X is irreducible in $Z[X]$, there exist infinitely many m 's for which $d_{m}^{(1)}$ (resp. $\boldsymbol{d}_{m}^{(2)}$) is square free ([16], [17]).

Remark 2. (1) It is well-known that $\lambda_{p}(k)=0$ for any quadratic field k such that $\left(\frac{k}{p}\right) \neq 1$ and $p \not x h(k), h(k)$ being the class number of k ([21, Thm. 10.4]). Let $p=3$ and $r=2$. Then, the family $\left\{k_{m}^{(1)}\right\}$ is "nontrivial" in the sense that we have several m satisfying the assumption of Proposition and $3 \mid h\left(k_{m}^{(1)}\right)$, for example, $m=1,3$. On the other hand, there are examples with $3 \times h\left(k_{m}^{(1)}\right)$ such as $m=2,4$. The family $\left\{k_{m}^{(1)}\right\}$ for $(p, r)=(5,2)$ and the family $\left\{k_{m}^{(2)}\right\}$ for $p=3,5$ are also nontrivial. The author does not know, for $p \geq 7$, whether or not, the families given in Proposition are nontrivial. (2) It is proved that there exist infinitely many real quadratic fields k such that $\left(\frac{k}{3}\right) \neq 1$ and $3 \times h(k)$ ([18]). So, we have infinitely many real quadratic fields k with $\lambda_{3}(k)=0$.

Remark 3. Several authors have given some criterions for the validity of Greenberg's conjecture or the weak conjecture (e.g. [4], [8], [9], [10], [12], [13], [14], [19], [20]). Using them, they have shown by some computation that $\lambda_{3}(k)=0$ for many real quadratic fields k with "small" discriminants. The key lemma (Lemma 2) we use in the proof is one of the existing criterions.
§3. Proof of Proposition. Let k be a real quadratic field with a fundamental unit ε and χ the associated Dirichlet character. We need the following two lemmas.

