The Structure of Subgroup of Mapping Class
 Groups Generated by Two Dehn Twists

By Atsushi ISHIDA
Department of Mathematical Sciences, the University of Tokyo (Communicated by Heisuke Hironaka, M. J. A., Dec. 12, 1996)

1. Introduction. The mapping class group $\mathcal{M}_{g, n}$ is defined by the set of all orientationpreserving homeomorhpisms of an oriented closed surface $\sum_{g, n}$ with genus g and n punctured. It is an interesting object in topology, and its presentation as a combinatorial group has been determined by Hatcher and Thurston. But the structure of subgroups of mapping class groups has not been sufficiently researched yet.

It is well known that a Dehn twist along a simple closed curve a on $\sum_{g, n}$ is defined as an element of $\mathcal{M}_{g, n}$ (see [1]), and we denote it by τ_{a}. In this paper, it will be shown that the subgroups of mapping class groups generated by two Dehn twists τ_{a}, τ_{b} are free groups in general cases.

The minimal intersection number is generally defined for any pair of simple closed curves (a, b) by following, and we denote it by $I_{\text {min }}(a, b)$ ([2]).

Definition 1.1. The minimal intersection number $I_{\text {min }}(a, b)$ is minimum of the number of $\alpha \cap \beta$ for all α in the isotopy class of a and all β in the isotopy class of b.

Theorem 1.2. $I_{\text {min }}(a, b) \geq 2$, then there are no relations between τ_{a} and τ_{b}.

Remark 1.3. It is immediately shown that if $I_{\text {min }}(a, b)=0$, then τ_{a} and τ_{b} generate an abelian subgroup (i.e. $\tau_{a} \tau_{b}=\tau_{b} \tau_{a}$). Moreover, it is easily shown that if $I_{\text {min }}(a, b)=1$, then there are two cases:
$\left\{\begin{array}{c}\left\langle\tau_{a}, \tau_{b} \mid \tau_{a} \tau_{b} \tau_{a}=\tau_{b} \tau_{a} \tau_{b},\left(\tau_{a} \tau_{b} \tau_{a}\right)^{4}=1\right\rangle \\ \quad \text { if }(\mathrm{g}, \mathrm{n})=(1,0) \text { or }(1,1), \\ \left\langle\tau_{a}, \tau_{b} \mid \tau_{a} \tau_{b} \tau_{a}=\tau_{b} \tau_{a} \tau_{b}\right\rangle \text { if otherwise. }\end{array}\right.$ In the former case the subgroup is isomorphic to SL(2, Z), and in the latter case the subgroup is isomorphic to 3 -strings braid group.
2. Dehn twists and the minimal intersection number. Lemma 2.1. When α, β, and γ are arbitrary three simple closed curves and put $\Gamma=\tau_{\alpha}^{n}(\gamma)$ for arbitrary integer n, then
$|n| * I_{m i n}(\gamma, \alpha) * I_{m i n}(\alpha, \beta)-I_{m i n}(\Gamma, \beta)$

$$
\leq I_{m i n}(\gamma, \beta)
$$

We denote a tubular neighbourhood of α by N_{α}, and we can draw Γ so as to coincide with γ on the outside of N_{α}. Then, we draw Γ^{\prime} which is isotopic to Γ and is transversely intersecting to γ only one time in each interval in the outside of N_{α}. The pair of γ and Γ^{\prime} is a configuration to attain minimum of intersection number (then there exists at least one hyperbolic metric realizing γ and Γ^{\prime} as geodesics).

We can choose a representative β^{\prime} in the isotopy class of β such that (A) the pair of β^{\prime} and γ is a configuration to attain minimum of intersection number and such that (B) the pair of β^{\prime} and Γ^{\prime} is a configuration to attain minimum of intersection number. (For example, β^{\prime} is a geodesic for the metric above.) We can assume the condition (C) that β^{\prime} satisfies $\beta^{\prime} \cap \gamma \cap \Gamma^{\prime}=\emptyset$, because we can isotopically perturb β^{\prime} to general position with keeping (A) and (B).

One hand, $\gamma \cup \Gamma^{\prime}$ is an image of some continuous map from $|n| * I_{\text {min }}(\gamma, \alpha)$ copies of S^{1}, and the image from each S^{1} is homotopic to α. Then,

$$
\#\left(\beta^{\prime} \cap\left(\gamma \cup \Gamma^{\prime}\right)\right) \geq|n| * I_{m i n}(\gamma, \alpha) * I_{m i n}(\alpha, \beta)
$$

On the other hand, from the condition (C),
$\#\left(\beta^{\prime} \cap\left(\gamma \cup \Gamma^{\prime}\right)\right)=\#\left(\beta^{\prime} \cap \gamma\right)+\#\left(\beta^{\prime} \cap \Gamma^{\prime}\right)$.
From (A) and (B),

$$
\begin{aligned}
\#\left(\beta^{\prime} \cap \gamma\right) & =I_{\text {min }}(\gamma, \beta) \\
\#\left(\beta^{\prime} \cap \Gamma^{\prime}\right) & =I_{\text {min }}(\Gamma, \beta)
\end{aligned}
$$

Finally, we get

$$
\begin{gathered}
I_{\min }(\gamma, \beta)+I_{\min }(\Gamma, \beta) \\
\geq|n| * I_{\min }(\gamma, \alpha) * I_{\min }(\alpha, \beta) .
\end{gathered}
$$

Remark 2.2. This proof is partialy almost same as EXPOSÉ 4 Appendice in [3]. However, Dehn twist is done along only one loop in our observation. Therefore we do not have to assume $n>0$.

The following lemma was suggested by T. Ohtsuki.

Lemma 2.3. When three simple closed

